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a b s t r a c t

Objective: Develop evidence-based recommendations for single-reviewer validation of electronic pheno-
typing results in operational settings.
Material and methods: We conducted a randomized controlled study to evaluate whether electronic phe-
notyping results should be used to support manual chart review during single-reviewer electronic phe-
notyping validation (N = 3104). We evaluated the accuracy, duration and cost of manual chart review
with and without the availability of electronic phenotyping results, including relevant patient-specific
details. The cost of identification of an erroneous electronic phenotyping result was calculated based
on the personnel time required for the initial chart review and subsequent adjudication of discrepancies
between manual chart review results and electronic phenotype determinations.
Results: Providing electronic phenotyping results (vs not providing those results) was associated with
improved overall accuracy of manual chart review (98.90% vs 92.46%, p < 0.001), decreased review dura-
tion per test case (62.43 vs 76.78 s, p < 0.001), and insignificantly reduced estimated marginal costs of
identification of an erroneous electronic phenotyping result ($48.54 vs $63.56, p = 0.16). The agreement
between chart review and electronic phenotyping results was higher when the phenotyping results were
provided (Cohen’s kappa 0.98 vs 0.88, p < 0.001). As a result, while accuracy improved when initial elec-
tronic phenotyping results were correct (99.74% vs 92.67%, N = 3049, p < 0.001), there was a trend
towards decreased accuracy when initial electronic phenotyping results were erroneous (56.67% vs
80.00%, N = 55, p = 0.07). Electronic phenotyping results provided the greatest benefit for the accurate
identification of rare exclusion criteria.
Discussion: Single-reviewer chart review of electronic phenotyping can be conducted more accurately,
quickly, and at lower cost when supported by electronic phenotyping results. However, human reviewers
tend to agree with electronic phenotyping results even when those results are wrong. Thus, the value of
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providing electronic phenotyping results depends on the accuracy of the underlying electronic phenotyp-
ing algorithm.
Conclusion: We recommend using a mix of phenotyping validation strategies, with the balance of strate-
gies based on the anticipated electronic phenotyping error rate, the tolerance for missed electronic phe-
notyping errors, as well as the expertise, cost, and availability of personnel involved in chart review and
discrepancy adjudication.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Electronic phenotyping (i.e., automated identification of
patients satisfying specified conditions) is essential for a variety
of biomedical informatics domains including electronic clinical
quality measurement (eCQM), clinical decision support (CDS), pre-
dictive analytics, risk adjustment, clinical registries, public health
reporting, and cohort identification for clinical trials and research
[1–3]. Moreover, the need for electronic phenotyping continues
to increase due to the ongoing digitalization of health care [4].
For instance, many regulatory bodies are starting to require quality
metrics to be calculated electronically instead of through manual
chart audits. Given this increased need for electronic phenotyping,
a number of projects have emerged for developing electronic phe-
notype definitions such as the Electronic Medical Records and
Genomics (eMERGE), Electronic Medical Record Search Engine
(EMERSE), mini-Sentinel, and Strategic Health IT Advanced
Research area four (SHARPn) projects [5–7].

An electronic phenotype definition includes a set of inclusion
and exclusion criteria that allow for the algorithmic selection of
sets of individuals based on stored clinical data [1]. For example,
a CDS system might recommend medications to improve glycemic
control for individuals with diabetes who have hemoglobin A1c
(HbA1c) levels of 9% or greater [8]. Similarly, an eCQM might
require identifying the same set of individuals and determining
whether those individuals received recommended care or achieved
care goals. For a quality measure, denominator inclusion criteria
refer to criteria specifying the set of all individuals for whom the
measure is applicable (e.g., diagnosis of diabetes) [9]. Denominator
exclusion criteria identify individuals who should be removed
from the measure population before determining if numerator cri-
teria are met (e.g., diagnosis of ischemic vascular disease). The
numerator criteria are the processes or outcomes expected for each
individual identified in the denominator (e.g., HbA1c < 7%). If
denominator and numerator criteria are calculated using electronic
algorithms, the determination of the patient status is referred to as
an electronic phenotyping result [3].

Given the increasing importance of electronic phenotyping, it is
essential that such phenotyping is as accurate as possible. For the
purposes of this paper, we define an erroneous electronic pheno-
typing result as misclassification of a patient according to the phe-
notyping definition. For example, misclassifying an individual
without diabetes as meeting denominator criteria for a compre-
hensive diabetes care measure is an inaccurate electronic pheno-
typing result. Such inaccurate phenotyping in the context of CDS
can lead to alert fatigue and potentially patient harm [10], and
inaccurate phenotyping in the context of eCQM can lead to mis-
leading characterization of practice performance, and/or limit the
ability of performance feedback to catalyze improvements in care
quality [11,12]. Sources of error in electronic phenotyping include
an incorrect or incomplete phenotyping definition, inaccurate
interpretation of the phenotyping definition, erroneous identifica-
tion or use of source clinical data, and insufficient data quality and
consistency [13]. Many phenotyping algorithm implementations

have been found to have problems with accuracy [14,15]. There-
fore, electronic phenotyping results must be appropriately vali-
dated before they can be used with confidence. Electronic
phenotyping validation is the process of establishing the accuracy
of electronic phenotypes.

Electronic phenotyping validation requires comparing elec-
tronic phenotyping results to a reference standard. Such a refer-
ence standard is usually developed using one of the following
three manual chart review methods: ‘gold standard’ (i.e., double
manual chart review with at least two independent reviewers
and adjudication, performed to resolve inter-reviewer discrepan-
cies), ‘trained standard’ (i.e., one expert reviewer with validity of
review checked), and ‘regular practice’ (single human reviewer)
[16]. Among 113 studies of automated clinical coding and classifi-
cation systems described by Stanfill et al., the majority (51%) used
the single-reviewer ‘regular practice’ approach to create a refer-
ence standard [16]. While many phenotyping validation efforts
use the ‘gold standard’ approach for iterative validation of pheno-
type definitions [1,5,17–19], such studies are usually performed in
resource-rich research settings [6,13,19,20]. For example, the
eMERGE network has conducted extensive research in phenotype
definition validation such as identifying individuals with cataracts,
type 2 diabetes, or dementia [13]. Unfortunately, ‘gold standard’
double manual chart review is often not feasible in operational set-
tings due to resource constraints. Indeed, in operational settings,
the reference standard for validation is often single manual chart
review coupled with expert adjudication of any discrepancies with
electronic phenotyping results.

Despite the importance of the single human reviewer approach
in operational settings, this approach to electronic phenotyping
validation is not well described in the literature. Thus, we have a
limited understanding of the strengths and limitations of different
single-reviewer strategies. In particular, there is limited guidance
available in the literature on how a maximum number of pheno-
typing errors can be identified with minimal person-hours, thereby
optimizing the quality of electronic phenotyping results given
available resources.

At our academic medical center, we were faced with the need to
efficiently validate electronic phenotypes being implemented for
enterprise clinical quality measurement and physician compensa-
tion using a single-reviewer approach. It has been previously
shown that providing electronic phenotyping results to humans
can improve the efficiency of manual phenotyping tasks such as
diagnosis coding and quality measurement [21,22]. However, no
prior literature was available in the context of single-reviewer
electronic phenotyping validation. Thus, we hypothesized that
supporting a single-reviewer chart review process with electronic
phenotyping results would make the review faster and more pre-
cise by reducing the validator’s cognitive load. For example, pro-
viding the date of the last retinal eye exam for an individual with
diabetes would allow the reviewer to more efficiently confirm that
the patient received the recommended care. However, we were
concerned that the reviewer may be influenced by the provided
results and may over-agree with erroneous electronic phenotyping
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