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The main motivation with the present study is to achieve a provably stable high-
order accurate finite difference discretisation of linear first-order hyperbolic problems 
on a staggered grid. The use of a staggered grid makes it non-trivial to discretise 
advective terms. To overcome this difficulty we discretise the advective terms using 
upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised 
using staggered SBP operators. The upwind and staggered SBP operators (for each order 
of accuracy) are compatible, here meaning that they are based on the same diagonal 
norms, allowing for energy estimates to be formulated. The boundary conditions are 
imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-
SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties 
are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler 
equations with constant background flow. The newly derived upwind and staggered SBP 
operators lead to significantly more accurate numerical approximations, compared with 
the exclusive usage of (previously derived) central-difference first derivative SBP operators.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that higher order methods (as compared to first- and second-order accurate methods) capture transient 
phenomena more efficiently since they allow a considerable reduction in the degrees of freedom, for a given error tolerance. 
In particular, high-order finite difference methods (HOFDM) are ideally suited for problems of this type. (See the pioneering 
paper by Kreiss and Oliger [1] concerning hyperbolic problems.) The major difficulty with HOFDM is to obtain a stable 
boundary treatment, something that has received considerable past attention concerning hyperbolic and parabolic problems. 
(For examples, see [2–7].) For long-time simulations, it is imperative to use finite difference approximations that do not 
allow growth in time—a property termed “strict stability” [8].

Strictly stable HOFDM on bounded domains usually have very different resolving capabilities in the large interior do-
main (away from boundaries), compared to the vicinity of the boundaries. Typically, the interior accuracy is much higher 
compared to the boundary accuracy. Roughly speaking, for hyperbolic problems the numerical errors are caused by: 1) the 
time integrator, 2) the boundary treatment, and 3) the interior dispersion error from long-range wave propagation. The time 
integration error is typically negligible when using a high-order Runge–Kutta method, compared to the spatial errors, i.e., 
points 2 and 3 above. For problems with very large computational domains (compared to the wavelengths) the interior 
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dispersion error is often the dominating error source. For problems with (internal and external) boundaries, and smaller 
domains (compared to the wavelengths), the boundary accuracy contributes significantly to the overall accuracy.

For linear hyperbolic wave-equations (an important special case of hyperbolic problems), such as Maxwell’s equations, 
the acoustic wave equation and the elastic wave equation, there are essentially two different HOFDM approaches. The first 
approach is to start from first order hyperbolic form and employ either a staggered grid finite difference approximation 
(SGFDA) [9–11], or a regular (i.e., equidistant collocated) grid finite difference approximation (RGFDA) [6,12]. The second 
approach is to rewrite the continuous equations into second order hyperbolic form and employ a narrow-stencil second 
derivative finite difference approximation. (For examples, see [13–19].)

The first approach, on a regular grid, has two obvious disadvantages for hyperbolic wave-equations, compared to the 
second approach: 1) the number of unknowns increase significantly in 3D, and 2) spurious oscillations due to unresolved 
features might be introduced when employing a central-difference first derivative approximation on a regular grid. The 
stability analysis for the second approach is less mature, although some important results have been reported during the 
last decade [20,16,21,17–19]. The second approach is however limited to wave equations and not applicable to more general 
hyperbolic equations with advective terms such as the linearised Euler equations.

For the first approach, we distinguish between SGFDA and RGFDA. It is well-known [22] that SGFDA have a much smaller 
interior dispersion error compared to RGFDA. Hence, SGFDA is potentially the most accurate finite-difference methodology 
for more general first-order hyperbolic equations, including the linearised Euler equations.

For linear hyperbolic problems, there are however some challenges with SGFDA: 1) non-cartesian grids, 2) boundary 
conditions, and 3) problems with background flow (e.g., the linearised Euler equations in a varying atmosphere [23]). The 
main focus (and novelty) in the present study is to develop a SGFDA methodology that can handle the last two challenges 
above, in a provably stable way up to 8th order accuracy.

Staggered grids are also popular when solving the incompressible Navier–Stokes equations (NSE) [24–27]. The convective 
nonlinear terms in NSE introduce another complication (added to the above list of challenges) since the unknowns and 
fluxes are not located in the same positions, requiring high-order interpolation. The introduction of general curvilinear grids 
(related to the first challenge in the above list) will also require the introduction of high-order interpolation. In a coming 
study we hope to include also the first challenge (curvilinear grids) and further extend the SGFDA methodology towards 
nonlinear problems, such as NSE. This is however out of scope in the present study.

A robust and well-proven HOFDM for well-posed initial boundary value problems (IBVP), is to combine summation-by-
parts (SBP) operators [28–31] and either the simultaneous approximation term (SAT) method [32], or the projection method 
[33,34,15,23] to impose boundary conditions (BC). Recent examples of the SBP-SAT approach can be found in [35–42]. The 
SBP operators found in literature (see for example [28–30,16,43–45]) are essentially central finite difference stencils, defined 
on regular grids, closed at the boundaries with a careful choice of one-sided difference stencils, to mimic the underly-
ing integration-by-parts formula in a discrete norm. Central-difference SBP operators defined on a regular (collocated) grid 
will here be referred to as traditional SBP operators. In [46] a spectral method on arbitrary grids with SBP properties was 
presented.

SBP operators defined on a regular grid with non-central finite difference stencils in the interior were introduced in [42], 
referred to as upwind SBP operators. Two benefits with upwind SBP operators, compared to traditional SBP operators are: 
1) the “built in damping” of spurious oscillations, and 2) favourable convergence properties (see [42] for details). However, 
the internal dispersion properties for upwind SBP operators are still less favourable compared to SGFDA. (See for example 
Fig. 1.)

SBP operators are sometimes categorized (see for example [29,30]) by the structure of their norm: a) diagonal, b) diagonal 
interior with block boundary closures, c) fully banded (Padé type [47]). For stability reasons (see for example [48–52]) the 
diagonal-norm SBP operators are the preferred choice in practice. The diagonal-norm SBP operators presented in literature 
have traditionally been defined on non-staggered (collocated) grids. However, in a recent study [53] diagonal-norm first 
derivative SBP operators on staggered grids are introduced, referred to as staggered SBP operators. In [53] the staggered SBP 
operators are combined with the SAT technique to solve 2D wave equations on staggered grids. Staggered SBP operators 
have recently [54] also been developed for contending with coordinate singularities in axisymmetric wave propagation with 
strongly enforced BC (sometimes refereed to as the injection method).

To achieve a staggered grid discretisation with the SBP-SAT methodology, applicable to more general hyperbolic systems 
(including advective terms) requires the combination of (collocated) upwind (or traditional) SBP operators and staggered 
SBP operators using the same norms. Such operators have not yet been presented in literature. Our first main goal is 
the construction of novel upwind and staggered SBP operators in the same diagonal norms. The second main goal is the 
formulation of strictly stable SGFDA of the 2D linearised Euler equations with background flow (wind), using the novel SBP 
operators in combination with the SAT boundary treatment.

In Section 2 the SBP-SAT method is introduced in 1D. The stability analysis for a 1D hyperbolic system, when combining 
upwind and staggered SBP operators is discussed in Section 3. In Section 4 the accuracy and stability properties of the 
newly developed SBP operators are verified by performing 1D numerical simulations. The stability analysis for the 2D Euler 
equations employing this novel combination of upwind and staggered SBP operators is discussed in Section 5. Verification of 
accuracy and stability by numerical studies of the 2D Euler equations is performed in Section 6. Section 7 summarizes the 
work. The coefficients for the novel SBP operators are included online as supplementary data for this paper, as described in 
Appendix B.
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