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In this work we put the method proposed by van Hinsberg et al. [29] to the test, 
highlighting its accuracy and efficiency in a sequence of benchmarks of increasing 
complexity. Furthermore, we explore the possibility of systematizing the way in which 
the method’s free parameters are determined by generalizing the optimization problem 
that was considered originally. Finally, we provide a list of worked-out values, ready for 
implementation in large-scale particle-laden flow simulations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The equation of motion of an isolated, small, spherical particle submerged in a Newtonian fluid is well described by the 
equation proposed by Maxey and Riley [47], often referred to as the Maxey–Riley Equation, or, MRE. It reads
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where C D = 6πaμ, C B = 6a2 √
πρ f μ , mp is the mass of the particle, m f is the mass of the displaced fluid volume, a is the 

particle radius, ρ f and μ are the density and dynamic viscosity of the fluid; and g is the acceleration due to gravity. The 
vector v is the velocity of the (point-)particle and u that of the surrounding fluid field, evaluated at the particle’s centre. 
D/Dt denotes the material derivative of the fluid. Equation (1), together with v = dr/dt and the initial conditions r(t0) = r0
and v(t0) = v0 form an initial value problem that must be solved to obtain the trajectory of the particle (where r is the 
particle’s position vector).
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The different terms on the right-hand side of (1) have distinct physical interpretations and can be identified as: (from 
left to right) the force applied to the volume displaced by the particle in the undisturbed flow (F U ), the added mass or 
virtual mass force (F A ),1 the Stokes drag (F D ), the Basset–Boussinesq history force (F H ) and the force due to the weight of 
the particle minus its buoyancy (F W ).

Equation (1) can be used to simulate the dynamics of a number of particles suspended in fluid, provided that the 
particles are small enough, so that the flow around each of them can be accurately modelled by the instationary Stokes 
equations; and that they spend most of the time far enough from each other to justify applying this single-particle theory 
[47]. Under these conditions, (1) accurately describes how the motion of the submerged particles is determined by the 
background flow field, u.

Typically, u is calculated with a suitable numerical method, such as the finite element method, on a static mesh. Hence 
the relevant flow variables need to be somehow interpolated in order to have u and its needed derivatives defined exactly 
at the particles’ centres. The motion of each particle can then be calculated by solving the MRE numerically, in a stepwise 
fashion, alternating advances in time with updates of the fluid flow at the particles’ locations. A detailed review of this kind 
of methods, among others, is given by Loth [39]. A discussion of alternative interpolation methods can be found in [30]. 
Some relevant examples of applications of these simulation techniques are the study of turbulent dispersion of suspended 
particles, [56]; contaminants convection in cracks, [52]; liquid crystal growth, [12]; and transport in biological vessels, 
[51].

In this work, we focus on the solution of the MRE itself, avoiding any discussion about either the fluid calculation or the 
interpolation process. Instead, we make use of analytical fluid fields, which we directly impose at the particle locations. This 
simplifies the arguments, eliminating any influences from interpolation errors and from errors in the numerical solution of 
the Navier–Stokes Equations.

Several studies have recently stressed its importance, particularly in liquid particulate flows [61,14]. However, the inclu-
sion of the history term in the numerical implementation of the Maxey–Riley equation is still widely regarded as impractical 
due to the large memory requirements and the corresponding overheads involved in the calculation of the associated inte-
gral. Indeed, the following two issues arise:

A: The integral is defined over the totality of the particles’ past trajectories. It is therefore necessary to keep track of 
an ever-increasing number of historical flow values (per particle) to perform the quadrature. Such number grows in 
proportion to the simulated duration.

B: Standard quadrature methods perform poorly due to the singularity at the upper integration limit, requiring a large 
number of quadrature points per time unit to sufficiently reduce the quadrature error.

An attempt to alleviate the severity of A was put forward by Dorgan and Loth [20], with the so-called window method. 
This approach takes advantage of the decreasing influence of past flow conditions on the advancing present to avoid having 
to store the complete history of the particles. Unfortunately, the decay associated with the Basset kernel (the 1/

√
t − s

prefactor of the integrand) is too slow at the very low particle Reynolds numbers2 that concern us, going as the inverse of 
the square root of time [40]. This implies that the number of points to be recorded still has to be large, and in fact radically 
limiting the performance of the method if accuracy is to be preserved [21].

The recent developments by Daitche [13] and van Hinsberg et al. [29] have certainly improved the situation. The first 
of these works addressed B through the construction of higher order schemes. The other work addressed A with a kind of 
window model that approximates, rather than neglects, the tail contribution to the Basset integral. In this work, we build 
upon these two methods, combining them and further adding to the result. The focus is placed on the optimization problem 
that leads to the determination of the free parameters of the model of van Hinsberg et al. We analyse the performance of the 
resulting algorithm in a succession of steps, each adding a layer of complexity toward real-world applications. Consistently, 
we show its remarkable efficiency and accuracy. We are also concerned with the validity ranges and robustness of the 
method, about which we draw some generic recommendations. Finally, a worked out list of optimal parameters is included 
(Appendix E), ready to be used in numerical implementations for particle-laden flow simulations.

2. Window models and the Hinsberg method

2.1. Preliminaries

Once discretized in time, the Basset–Boussinesq history term, F H will have been replaced by its finite difference coun-
terpart. That is, a linear combination of the integral itself evaluated at different times. Therefore, the problem of how to 

1 The form of the added mass force used here, with the material derivative applied to the field u corresponds to the more commonly applied form of this 
term, derived by Auton et al. [2] for inviscid flow. This form turns out to be also accurate for low and intermediate Reynolds numbers, as has been shown 
in several studies; see [48,44,66]. However, the difference with its alternative, involving dv

dt , is negligible in the range of validity of the MRE; see [47].
2 The particle Reynolds number is defined as Rep = aw/ν , where w is the modulus of the slip velocity. The MRE is derived under the assumption that 

Rep � 1.
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