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Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for 
solutions of incompressible Navier–Stokes equations which are integrated using a semi-
implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-
transform-based direct solution methods used in the semi-implicit fractional-step method 
take advantage of multiple tridiagonal matrices whose inversion is known as the major 
bottleneck for acceleration on a typical multi-core machine. A novel implementation of the 
semi-implicit fractional-step method designed for GPU acceleration of the incompressible 
Navier–Stokes equations is presented. Aspects of the programing model of Compute Unified 
Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the 
present method are discussed in detail. A data layout for efficient use of CUDA libraries 
is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. 
OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the 
Navier–Stokes equations are computed on a GPU. Performance of the present method using 
CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI 
with the speed of solving one heptadiagonal matrix using a conjugate gradient method. 
An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a 
single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a 
flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup 
is reached for the same problem using a Tesla P100 GPU.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Reduction of computational time is a major challenge in numerical simulations of fluid flow. At high Reynolds numbers, 
the three-dimensional Navier–Stokes equations require a very large number of grid points to resolve broadband scales of 
interest. Particularly in a direct numerical simulation (DNS) of turbulent fluid flow, the computational grid is required to be 
dense enough to resolve the entire spectrum of turbulent scales in space and time. As a result, parallel computing based on 
multi-core Central Processing Units (CPUs) has long been used to overcome such computational cost and still remains as the 
mainstream methodology for solving large-scale problems [2,17]. Nevertheless even for moderate Reynolds numbers, DNS 
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Table 1
Comparison of CPU and GPU used in the present study.

Tesla K40c 
GPU

Xeon E5-2660 v3 
CPU

Cache 1.5 MBa 25 MBb

Core frequency 745 MHz 2.6 GHz
Memory bandwidth 288 GB/s 68 GB/s
DP Peak throughput 1430 GFlops 416 GFlops
Computation units 15 SMX 10 cores
Performance per Watt 6.09 GFlops/W 3.96 GFlops/W
a GPU L2 cache shared by multiprocessors.
b CPU L3 cache shared by cores.

requires a few hundred million number of grid points and thereby calls for compute nodes occupying considerable footprint 
in terms of space and energy consumption.

Graphics Processing Units (GPUs) on the other hand, offer new opportunities for accelerating computational solutions of 
the Navier–Stokes equations. As shown in Table 1 in which distinct characteristics of two hardwares are compared, GPUs are 
generally characterized by energy-efficiency and high devotion to throughput and memory bandwidth rather than latency 
enhancement. In other words, GPU is more suited for handling large amount of data in parallel rather than fast processing 
of a single operation. Thus GPU computing can become an attractive candidate for large-scale problems, many of which can 
be formulated into massively parallel tasks. A comprehensive review by Niemeyer et al. [18] introduces a number of recent 
studies which have used GPUs to successfully accelerate flow solvers.

Although a GPU is known to have high compute throughput and memory bandwidth, it may not always deliver impres-
sive performance gains depending on the numerical scheme used for temporal integration of Navier–Stokes equations. GPUs 
in general become effective when the given problem is decomposed into tasks operating on independent data set. Regard-
ing the methods of time advancement, fully explicit schemes are examples with such data independence. For this reason, 
researchers have employed GPUs to accelerate flow solvers based on fully explicit temporal integration of compressible as 
well as incompressible Navier–Stokes equations [1,25,27].

In contrast to fully explicit schemes which are usually used for compressible flows, semi-implicit fractional-step methods 
with second-order finite-volume or finite-difference spatial discretization schemes [13] have been commonly used for so-
lutions of wall-bounded incompressible flows. In this method, Navier–Stokes equations are integrated using a combination 
of explicit and implicit schemes for convective and viscous terms, respectively. The main advantage of the method for wall-
bounded flows is that the implicit treatment of viscous terms allows a stable solution even at a larger time-step size, which 
is limited in fully explicit schemes due to the small grid size near the wall. Owing to stability and savings in computation 
time, this method has widely been used for solving incompressible Navier–Stokes equations [9,12,16,28].

Unfortunately, the semi-implicit fractional-step method has limited scalability due to the serial nature of its algorithms. 
Fractional-step methods in general divide the original three-dimensional incompressible Navier–Stokes equations into mo-
mentum equations for solving intermediate velocities, and a Poisson equation for correcting the velocities. When the viscous 
terms are discretized using a commonly used second-order central-difference scheme and are integrated implicitly, the re-
sulting momentum equations require inversion of multiple tridiagonal matrices (TDMAs). A classic way of inverting TDMAs 
is the Thomas algorithm, which performs O (n) operations; yet it is inherently difficult to parallelize. Similar reasoning ap-
plies to the Poisson equation; despite the efficiency of direct solution of matrices after Fourier transform in homogeneous 
directions and finite-difference discretization in the wall-normal inhomogeneous flow direction, this method has not re-
ceived much attention from prior studies using GPUs because of its additional complexity coming from inverting TDMAs. 
Alfonsi et al. [1] used a modified version of Thomas algorithm on GPUs to invert multiple TDMAs in the Poisson equation, 
but parallelism was limited because each thread solved one linear system at a time. Deng et al. [6] implemented a TDMA 
solver for accelerating the Alternating Direction Implicit (ADI) method on GPUs, but parallelism was likewise limited in that 
each thread swept each line in the z-direction. For this reason, recent studies have simplified fractional-step methods by 
using fully explicit time integration when GPUs were adopted for acceleration [1,10].

A few studies have assessed the performance of semi-implicit fractional-step methods on parallel machines. Borrell et 
al. [2] developed a high-resolution DNS code for a solution of the flat-plate boundary layer under a zero pressure gradient up 
to Reθ = 6800 using a semi-implicit fractional-step method, which treated only the wall-normal viscous terms implicitly. In 
addition to Message Passing Interface (MPI), OpenMP was used for an additional level of parallelism, achieving weakly linear 
scalability up to 32768 cores of CPU. The authors mention about the difficulty in parallelization of the TDMA solver and fast 
Fourier transform (FFT) when using a hybrid MPI-OpenMP approach. Another semi-implicit fractional-step method using 
ADI for the Helmholtz-type momentum equations and partial diagonalization for the Poisson equation was implemented 
using MPI [29]. The implementation showed that the discretized momentum equations which consist of nine tridiagonal 
matrices (three for each velocity component) were the major source of reduced scalability. The work was further extended 
to a hybrid CPU–GPU environment [30] and for the same method, Thomas algorithm was ported onto GPUs. However, the 
approach exhibits coarse-grain parallelism, providing insufficient amount of work needed for effective GPU acceleration.

The present study proposes a new implementation of a semi-implicit fractional-step method coupled with ADI and 
Fourier-transform methods which is designed particularly for a GPU-accelerated computation of incompressible Navier–
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