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We express a certain complex-valued solution of Legendre’s differential equation as the 
product of an oscillatory exponential function and an integral involving only nonoscillatory 
elementary functions. By calculating the logarithmic derivative of this solution, we show 
that Legendre’s differential equation admits a nonoscillatory phase function. Moreover, 
we derive from our expression an asymptotic expansion useful for evaluating Legendre 
functions of the first and second kinds of large orders, as well as the derivative of 
the nonoscillatory phase function. Our asymptotic expansion is not as efficient as the 
well-known uniform asymptotic expansion of Olver; however, unlike Olver’s expansion, it 
coefficients can be easily obtained. Numerical experiments demonstrating the properties of 
our asymptotic expansion are presented.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Legendre functions of degree ν ∈ C — that is, the solutions of the second order linear ordinary differential equation

y′′(z) − 2z

1 − z2
y′(z) + ν(ν + 1)

1 − z2
y(z) = 0 (1)

— appear in numerous contexts in physics and applied mathematics. For instance, they arise when certain partial differential 
equations are solved via separation of variables, they are often used to represent smooth functions defined on bounded 
intervals, and their roots are the nodes of Gauss–Legendre quadrature rules. For our purposes, it is convenient to work with 
the functions P̄ν and Q̄ ν defined for θ ∈ (

0, π
2

)
and ν ≥ 0 via the formulas

P̄ν(θ) =
√(

ν + 1

2

)
Pν(cos(θ))

√
sin(θ) (2)

and

Q̄ ν(θ) = − 2

π

√(
ν + 1

2

)
Q ν(cos(θ))

√
sin(θ), (3)
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where Pν and Q ν are the Legendre functions of the first and second kinds of degree ν , respectively. The functions (2) and 
(3) are solutions of the second order linear ordinary differential equation

y′′(θ) +
((

ν + 1

2

)2

+ 1

4
cosec2(θ)

)
y(θ) = 0 for all 0 < θ <

π

2
. (4)

By a slight abuse of terminology, we will refer to (4) as Legendre’s differential equation.
The coefficient of y in (4) is positive and increases with ν , with the consequence that P̄ν and Q̄ ν are highly oscillatory 

when ν is of large magnitude. It has long been known that despite this there exist phase functions for (4) which are 
nonoscillatory in some sense. In particular, there is a nonoscillatory function αν whose derivative is positive on 

(
0, π

2

)
and 

such that

P̄ν(θ) = √
W

cos(αν(θ))√
α′

ν(θ))
(5)

and

Q̄ ν(θ) = √
W

sin(αν(θ))√
α′

ν(θ)
, (6)

where W is the Wronskian

W = 2

π

(
ν + 1

2

)
(7)

of the pair P̄ν , Q̄ ν . By differentiating the expressions

Q̄ ν(θ)

P̄ν(θ)
= tan (αν(θ)) and

P̄ν(θ)

Q̄ ν(θ)
= cotan (αν(θ)) , (8)

at least one of which is sensible at any point in 
(
0, π

2

)
since P̄ν and Q̄ ν cannot vanish simultaneously there, we obtain

α′
ν(θ) = W(

P̄ν(θ)
)2 + (

Q̄ ν(θ)
)2

. (9)

That (9) is nonoscillatory is well known. Indeed, this can be seen in a straightforward fashion from Olver’s uniform 
asymptotic expansions

P̄ν(θ) ∼ √
λθ

⎛
⎝ J0 (λθ)

∞∑
j=0

A j(−θ2)

λ2 j
− θ

λ
J1 (λθ)

∞∑
j=0

B j(−θ2)

λ2 j

⎞
⎠ as ν → ∞ (10)

and

Q̄ ν(θ) ∼ √
λθ

⎛
⎝Y0 (λθ)

∞∑
j=0

A j(−θ2)

λ2 j
− θ

λ
Y1 (λθ)

∞∑
j=0

B j(−θ2)

λ2 j

⎞
⎠ as ν → ∞ (11)

for the Legendre functions (a derivation of these expansions can be found in Chapter 5 of [13]). In (10) and (11), λ = ν + 1
2 , 

A0(ξ) = 1, and the remaining coefficients A1, A2, . . . and B0, B1, . . . are defined via the formulas

Bk(ξ) = −A′
k(ξ) + 1

|ξ |2
0∫

ξ

(
1

16

(
cosec2

(√|τ |
)

+ 1

τ

)
Ak(τ ) − A′

k(τ )

2
√|τ |

)
dτ (12)

and

Ak+1(ξ) = −ξ B ′
k(ξ) − 1

16

0∫
ξ

(
cosec2

(√|τ |
)

+ 1

τ

)
Bk(τ ) dτ . (13)

By plugging (10) and (11) into (9) and taking (7) into account, we obtain

α′
ν(θ) = 2

πθ

1

( J0(λθ))2 + (Y0(λθ))2
+O

(
1

ν

)
as ν → ∞. (14)

The function
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