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synchronization between PEs is relaxed at a mathematical level. While standard schemes
can maintain their stability in the presence of asynchrony, their accuracy is drastically

ﬁg‘:lv:;fjny_tolemm schemes affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT)
Partial differential equations finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy
Massive computations when synchronizations are relaxed. We show that there are several choices available in
Asynchronous computing selecting a stencil to derive these schemes and discuss their effect on numerical and

computational performance. We provide a simple classification of schemes based on the
stencil and derive schemes that are representative of different classes. Their numerical
error is rigorously analyzed within a statistical framework to obtain the overall accuracy
of the solution. Results from numerical experiments are used to validate the performance
of the schemes.
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1. Introduction

Numerical simulations are an important tool in understanding complex problems in physics and engineering systems.
Many of these phenomena are multi-scale in nature, and are governed by nonlinear partial differential equations (PDEs).
With a wide range of scales at realistic conditions, like turbulence phenomena in fluid flows, the numerical solution of
these equations becomes computationally very expensive. Advances in computing technology have made it possible to carry
out intensive simulations on massively parallel computers. Currently, state-of-the-art simulations are routinely being done
on tens or hundreds of thousands of processing elements (PEs) [1-4].

It is known, at extreme scale, that data communication as well as synchronization between PEs pose a major challenge
in the scalability of scientific applications [5]. In the case of PDE solvers, where the parallelism is typically realized by
decomposing the computational domain among PEs, communications that affect the scalability arise due to the computation
of spatial derivatives in order to propagate the physical information across the domain. The problem becomes more acute
in simulations of transient phenomena, where spatial derivatives are evaluated at each time step over an integration of
large number of steps. Another issue concerning the scalability is related to the performance variations across the PEs in
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Fig. 1. Discretized one-dimensional domain decomposed into two PEs (P =2).

a parallel system. In this case, sub-optimal performance of even a few PEs may lead to idling of others, as dictated by the
data dependencies involved in the computations. It is likely that in future Exascale computing systems, which will have
an extremely large PE count, communication and synchronization will be a major bottleneck. It is thus not surprising that
there is a substantial increased interest in developing numerical methods that minimize communications and relax data
synchronizations at the mathematical level [6,7].

An early effort in solving PDEs in an asynchronous fashion has been presented in [8,9]. Their method is based on
finite-difference schemes and is restricted to the solution of parabolic PDEs with at most second order accuracy. More recent
work [10,11], again based on finite-difference method, has suggested that due to the randomness in the arrival of messages
at different PEs, the resulting algebraic difference equations are stochastic in nature. In that work, a statistical framework
to analyze such systems was developed to study the numerical properties of commonly used schemes in the presence
of asynchrony. Furthermore, they show that though the stability and consistency of the schemes can be maintained, their
accuracy is significantly degraded. They also proposed the possibility of deriving schemes that are tolerant to communication
data asynchrony. A follow up of this work to a simple specific equation and numerical scheme has be presented in [12].
Although the authors were able to maintain second order accuracy for their chosen scheme when asynchrony is present,
one can show using Taylor series that they are severely limited to low order of accuracy. However, as mentioned earlier,
a number of natural and engineering systems are multi-scale in nature and will require higher order accurate schemes. In
this work, we present a general methodology to generate different classes of high-order asynchrony-tolerant (AT) schemes.
This is the main objective of this paper.

The rest of the paper is organized as follows. We first briefly review the concept of asynchronous computing for PDEs
in section 2. A general method to derive AT schemes, the choices in stencil available in arriving at these schemes and their
classification are presented in section 3. In section 4, we show a statistical framework to analyze the overall accuracy of
a numerical method when AT schemes are used. Numerical experiments to validate the performance of AT schemes are
shown in section 5. Conclusions and further discussions are presented in section 6.

2. Concept

Let u(x,t) be a function of spatial coordinate x and time t, which is governed by a time-dependent PDE in a one-
dimensional domain. Fig. 1 illustrates the discretized domain which is decomposed into P number of PEs. Let i and n
represent an arbitrary grid point in the domain and time level such that u(x;, t,) = u}'. For clarity in the exposition, we
assume that the grid points are uniformly distributed in the domain with a spacing Ax. A finite-difference to approximate
a spatial derivative at point i and time level n can be expressed, in the most general case, as
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where d is the order of the derivative, J1 and J, are the number of points to the left and right of point i in the stencil,
and c; is the appropriate coefficient or weight of u?+ i such that the scheme is accurate to an order a in space. The term
O(AX") represents the truncation error of the scheme.

Usually, the numerical solution of a time-dependent PDE is obtained by advancing an initial condition according to an
algebraic finite-difference equation in small steps of time At. During each time advancement, say, marching from a time
level n to n 4+ 1, spatial derivatives are computed at each grid point using Eq. (1). In general, these computations are trivial
to implement in a serial code, as the value of the function at all the grid points will be locally available in the memory
of the PE. However, if the domain is decomposed into multiple PEs, computations at points near PE boundaries may need
values of the function at stencil points that are computed in the neighboring PEs. Such values are commonly communicated
into buffer or ghost points, as shown in Fig. 1. Note that the number of values communicated across the left and right PE
boundaries is equal to J; and ], respectively.

Let I represent the set of physical grid points in the domain and B represent the set of buffer points. For convenience we
divide the set I further such that I =1I; U Ig. The set of grid points near PE boundaries whose computations need data from
neighboring PEs will be denoted by Ig. The complementary set of interior points, whose computations are independent
of communication between PEs is denoted by I;. In commonly used parallel algorithms, computations at a point i € Ip
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