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This paper presents a new approach to constraining the eigenvalue range of symmetric 
tensors in numerical advection schemes based on the flux-corrected transport (FCT) 
algorithm and a continuous finite element discretization. In the context of element-based 
FEM-FCT schemes for scalar conservation laws, the numerical solution is evolved using 
local extremum diminishing (LED) antidiffusive corrections of a low order approximation 
which is assumed to satisfy the relevant inequality constraints. The application of a limiter 
to antidiffusive element contributions guarantees that the corrected solution remains 
bounded by the local maxima and minima of the low order predictor.
The FCT algorithm to be presented in this paper guarantees the LED property for the 
maximal and minimal eigenvalues of the transported tensor at the low order evolution 
step. At the antidiffusive correction step, this property is preserved by limiting the 
antidiffusive element contributions to all components of the tensor in a synchronized 
manner. The definition of the element-based correction factors for FCT is based on 
perturbation bounds for auxiliary tensors which are constrained to be positive semidefinite 
to enforce the generalized LED condition. The derivation of sharp bounds involves 
calculating the roots of polynomials of degree up to 3. As inexpensive and numerically 
stable alternatives, limiting techniques based on appropriate estimates are considered. The 
ability of the new limiters to enforce local bounds for the eigenvalue range is confirmed 
by numerical results for 2D advection problems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

During the last decades, advanced flux-corrected transport (FCT) algorithms have been developed for the numerical 
solution of convection-dominated transport problems using finite element approximations on unstructured meshes [9]. 
High-resolution schemes of FCT type distinguish themselves from traditional stabilization techniques like the streamline 
upwind Petrov–Galerkin (SUPG) method in that local maximum principles are enforced algebraically and the high order of 
accuracy is preserved in regions where the solution is smooth. This design philosophy ensures monotonicity of the solution 
and leads to robust algorithms.

While the FCT methodology has been successfully extended to systems of conservation laws like the Euler equations, 
current research challenges include limiting of (symmetric) tensor quantities which occur, e.g., in context of orientation and 
stress tensors to be discussed in this paper. In contrast to scalar variables, it is not entirely clarified which properties of 
tensor fields should be monitored and constrained to satisfy a relevant local maximum principle. The use of algorithms 
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that limit each tensor component separately is not recommended since such limiting techniques are frame dependent 
and may fail to preserve physical properties like positive semidefiniteness. The objective limiter developed by Maire et 
al. [17] constrains the tensor components along flow-related directions. Luttwak and Falcovitz [16] proposed a tensor image 
polyhedron (TIP) approach based on the convex hull criterion initially developed for vectors [15]: The scaled/modified 
quantity of interest must lie in the convex hull of neighboring vectors/tensors. This limiting strategy guarantees that tensor 
components are constrained in a frame invariant manner and, hence, preserves the symmetry of numerical solutions. Related 
and more efficient extensions are proposed in [14], where bounding boxes (BB) enclosing the convex hull are exploited. In 
the context of bounds preserving reconstruction (remapping), tailor-made slope limiters for stress tensors were recently 
developed in [8,19] using principal invariants as quantities of interest: After separating the trace and limiting it as a scalar 
quantity, the second (and third) principal invariant of the traceless part are constrained separately. This strategy makes 
it possible to preserve low order bounds for the elastic energy density, an important conserved quantity proportional to 
the second invariant of the deviatoric stress tensor [8]. In addition, eigenvalues are implicitly constrained because of their 
relation to principal invariants.

In the context of orientation tensors which are defined as moments of an orientation distribution function, eigenvalues 
have a more important physical meaning: The eigenvectors represent the principal orientation directions, while the cor-
responding rates of alignment are represented by the eigenvalues [1,2]. This calls for the use of numerical methods that 
preserve the range of eigenvalues and motivates the following definition of local maximum principles in the present paper: 
The minimal/maximal eigenvalue of a constrained orientation tensor should be bounded below/above by the local minimum/maximum 
of eigenvalues corresponding to an eigenvalue range preserving low order approximation. In practice, the need for calculation or 
estimation of eigenvalues can be avoided using sufficient conditions which boil down to root isolation for polynomials of 
degree up to 3. The resulting eigenvalue range limiters preserve physical properties of orientation tensors and maintain their 
positive semidefiniteness. In simulations of fiber-reinforced polymers, a failure to control the range of eigenvalues may result 
in unphysical orientation states leading to unrealistic stresses and spurious velocities [23].

The paper is organized as follows: After motivating limiting based on (the range of) the eigenvalues (Sec. 2), an upwind-
biased low order method originally developed for scalar transport equations is extended to tensorial variables and the 
corresponding local extremum diminishing (LED) property is proved for the semidiscrete and fully discrete problem (Sec. 3). 
Eigenvalue range preserving limiters for the antidiffusive element contributions (as defined in Sec. 4) are designed using 
sufficient conditions of positive semidefiniteness for auxiliary tensors (Sec. 5). The straightforward approach to enforcing 
these conditions involves worst case estimates or the use of a theorem by Caron et al. [4]. As an alternative to eigenvalue 
calculations, a criterion based on nonnegativity of the principle invariants is introduced in Sec. 5.3. It yields sharp estimates 
at the cost of root finding for cubic polynomials. Simplified criteria of positive semidefiniteness are derived using appro-
priate approximations which lead to cost-effective limiting procedures. Additionally, local maximum principles for the trace 
are enforced using the limiter presented in Sec. 6. This paper concludes with a numerical study and evaluation of the pro-
posed limiting algorithms. The test problems considered in Sec. 7 represent tensorial extensions of well-known benchmark 
problems for linear advection of scalar quantities in incompressible flows.

1.1. Index convention for tensors

Without loss of generality, let the (real-valued) eigenvalues of a symmetric tensor A ∈ R
d×d , d = 2, 3, be sorted in 

increasing order. The notation λ1(A) ≤ . . . ≤ λd(A) can be shortened by using the abbreviations a1 := λ1(A), . . . , ad := λd(A)

for the sorted eigenvalues. The double subscript notation akl , 1 ≤ k, l ≤ d will be used to identify components of A. The 
eigenvalues and entries of a tensor Ai will be referred to as ai,k and ai,kl , respectively. Inequalities involving tensors are 
meant to hold for each eigenvalue. For example, the notation A ≥ 0 will be used if A is positive semidefinite (similarly for 
A ≤ 0, A > 0, and A < 0).

2. Properties of interest

The problem to be considered is given by the linear transport equation⎧⎪⎨
⎪⎩

∂t U + div(vU ) = 0 in �, (a)

U (·, t) = U in on �in = {x ∈ ∂� : n(x) · v < 0}, (b)

U (·,0) = U0 in �, (c)

(1)

where � ⊂ R
d , d = 2, 3 is a bounded domain, �in is the inflow part of the boundary ∂�, n : ∂� → R

d is the unit outward 
normal vector, v : � × R

+
0 → R

d is the velocity field, and U : � × R
+
0 → R

d×d is the unknown symmetric tensor and 
variable of interest. The initial and boundary conditions are given by the (symmetric) tensor fields U0 : � → R

d×d and 
U in : �in ×R

+
0 →R

d×d .
At the continuous level, a solution of the scalar transport equation (1) is positivity preserving and satisfies the maximum 

principle if div(v) = 0. When tensorial unknowns are convected by divergence-free velocity fields, each scalar quantity 
f : Rd×d →R corresponding to a differentiable function of the tensor entries evolves in the same manner as the solution of 
the scalar transport equation
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