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We present a novel approach for solving steady-state stochastic partial differential 
equations in high-dimensional random parameter space. The proposed approach combines 
spatial domain decomposition with basis adaptation for each subdomain. The basis 
adaptation is used to address the curse of dimensionality by constructing an accurate 
low-dimensional representation of the stochastic PDE solution (probability density function 
and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation 
to a specific subdomain affords finding a locally accurate solution. Then, the solutions 
from all of the subdomains are stitched together to provide a global solution. We support 
our construction with numerical experiments for a steady-state diffusion equation with a 
random spatially dependent coefficient. Our results show that accurate global solutions can 
be obtained with significantly reduced computational costs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty quantification for systems with a large number of deterministically unknown input parameters is a 
formidable computational task. In the probabilistic framework, uncertain parameters are treated as random variables/fields, 
yielding the governing equations stochastic. The two most popular methods for solving stochastic equations are Monte Carlo 
(MC) and polynomial chaos (PC) expansion. In both methods, the random input parameters are represented with d random 
variables using truncated Karhunen–Loève (KL) expansion [1]. MC methods are robust and easy to implement, but they con-
verge at a very slow rate. Hence, they require a large number of samples. On the other hand, the MC convergence rate does 
not depend on d. Contrary to this, the computational cost of standard PC methods increases exponentially with increasing 
d, a phenomenon often referred to as the “curse of dimensionality” [2–5]. Because of this, standard PC methods are only 
efficient for small to moderate d [6–8].

Recently, basis adaptation [9] and active subspace methods [10] have been presented to identify a low-dimensional 
representation of the solution of stochastic equations. In the current work, we propose a new approach that combines basis 
adaptation with spatial domain decomposition ([11–15]) to address the problem posed by large d. In particular, we focus 
on partial differential equations (PDEs) with spatially dependent random coefficients. If considered in the whole spatial 
domain, the randomness is very high-dimensional. However, a few dominant random parameters could suffice locally [16]. 
As a result, we can obtain low-dimensional local representations of the random solution in each subdomain. To obtain the 
low dimensional representation in each subdomain, we use the Hilbert space KL expansion [17]. Then, we reconstruct a 
global solution by stitching together the local solutions for each subdomain.
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The paper is organized as follows: Section 2 presents the problem of uncertainty quantification for PDEs with random 
coefficients. Section 3 introduces our approach that combines the domain decomposition and basis adaptation. Section 4
contains numerical results for a two-dimensional steady-state diffusion equation for two different types of boundary condi-
tions. Section 5 presents conclusions and ideas for future work.

2. PDEs with random coefficients

Let D be an open subset of Rn and (�, �, P ) be a complete probability space with sample space �, σ -algebra �, and 
probability measure P . We want to find a random field, u(x, ω) : D × � →R, such that P -almost surely

L(x, u(x,ω);a(x,ω)) = f (x,ω) in D × �,

B(x, u(x,ω);a(x,ω)) = h(x,ω) on ∂ D × �, (1)

where L is a differential operator and B is a boundary operator. We model the uncertainty in the stochastic PDE (1) by 
treating the coefficient a(x, ω) as a random field and compute the effect of this uncertainty on the solution field u(x, ω). 
To solve the stochastic PDE numerically, we discretize the random fields a(x, ω) and u(x, ω) in both spatial and stochastic 
domains. In this paper, we will focus on the special case where a(x, ω) is a log-normal random field [18]. This means 
that a(x, ω) = exp[g(x, ω)], where g(x, ω) is a Gaussian random field whose mean and covariance function are known. We 
approximate g(x, ω) with a truncated KL expansion, while the coefficient a(x, ω) and solution u(x, ω) are approximated 
through truncated PC expansions.

2.1. Karhunen–Loève expansion of the random field g(x, ω)

The random field g(x, ω) can be approximated with a truncated KL expansion [1],

g(x,ω) ≈ g(x, ξ (ω)) = g0(x) +
d∑

i=1

√
λi gi(x)ξi(ω), (2)

where d is the number of random variables in the truncated expansion; ξ = (ξ1, · · · , ξd)
T , ξi are uncorrelated random 

variables with zero mean; g0(x) is the mean of the random field g(x, ω); and (λi , gi(x)) are eigenvalues and eigenvectors 
obtained by solving the eigenvalue problem,∫

D

C g(x1, x2)gi(x2)dx2 = λi gi(x1), (3)

where C g(x1, x2) is the covariance function of the Gaussian random field g(x, ω). The eigenvalues are positive and non-
increasing, and the eigenfunctions gi(x) are orthonormal,∫

D

gi(x)g j(x)dx = δi j, (4)

where δi j is the Kronecker delta. In this work, we assume the random variables ξi have Gaussian distribution. Therefore, ξi
are independent.

2.2. Polynomial chaos expansion

We approximate the input random field, a(x, ω) and the solution field u(x, ω) using truncated PC expansions [19] in 
Gaussian random variables as follows:

a(x,ω) ≈ a(x, ξ (ω)) = a0(x) +
Nξ∑

i=1

ai(x)ψi(ξ) (5)

and

u(x,ω) ≈ u(x, ξ (ω)) ≈ u0(x) +
Nξ∑

i=1

ui(x)ψi(ξ), (6)

where Nξ = (d+p)!
d! p! − 1 is the number of terms in PC expansion for dimension d and order p, u0(x) is the mean of the 

solution field, ui(x) are PC coefficients, and {ψi(ξ)} are multivariate Hermite polynomials. These polynomials are orthogonal 
with respect to the inner product defined by the expectation in the stochastic space,
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