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1. Introduction

Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length 
scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational 
techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simula-
tion of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure 
was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit ap-
proach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is 
expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, 
implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications re-
quiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless 
approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that 
we briefly discuss next.

A hash table potentially provide O (1) access to its elements owing to the use of an array as the underlying data structure. 
However, O (1) access is only guaranteed as long as there are no collisions in the hash table. In practice, this requirement 
is difficult to fulfill. Collisions do happen when the hash function generates the same index for different keys. Typically, 
a remainder operator is used as the hash function to fit the keys inside a given array.
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Fig. 1. Illustration of mesh element indexing that arise when a hash table or a red-black tree is used in the AMR algorithm, (a) Morton code representation 
of mesh elements with two levels of adaptation, (b) integer index values corresponding to the Morton code from (a) in the hash table approach, (c) sorted 
Morton ordering that results by default when a red–black tree approach is used.

Data locality is key to superior memory performance. It is desirable to store neighboring data closer to each other to 
preserve data locality. One option to ensure data locality is to track data with space-filling curves. The use of a Z-order 
curve [2] is popular for that reason.

Morton encoded Z-order curve was introduced in octree construction to enhance data locality [1,3,4]. However, when 
a hash table is combined with the Z-order curve, perfect data locality can not be guaranteed for complex geometry ap-
plications. As we later present in this short note, the Z-order curve compliance can be broken because of collisions in the 
hash table. Nonetheless, this combination currently represents the state-of-the-art in octree generation in AMR. For exam-
ple, Burstedde et al. [5] developed p4est to generate forest of octrees for large-scale scientific computing. p4est has 
become a popular parallel AMR software and has been adopted in several applications. Burstedde et al. presented a novel 
encoding scheme to keep track of interoctree connectivity with a 2:1 balance algorithm. In their approach they adopted a 
linear-octree storage which only stores the leaves of the octree. Burstedde et al. were able to generate a multi-octree mesh 
with as many as 5.13 × 1011 elements using 220,320 processes.

In a Z-order curve enhanced hash table approach, one needs to convert the Morton code representation of the nodes 
of the linear-octree to an integer value. This number is then converted to the index of the underlying array in the hash 
table data structure. In three dimensional space three bits are used to identify the node at each level, which means that 
the maximum level for deep mesh adaptation is limited to 10 and 21 levels for 32-bit and 64-bit systems, respectively. 
Conversion to an index is also limited by the maximum integer number representable on a computer, beyond which an 
overflow is inevitable. This limitation in adaptation level can be relaxed at the expense of accepting collisions in the hash 
table. But the desirable O (1) complexity of the hash table is then destroyed in the process. Perfect hashing with O (1) access 
is only possible if the size of the underlying array is large enough to accommodate the full octree, which amounts to 23n , 
where n is the maximum level of adaptation and the factor of 3 is due to the three dimensionality of the domain. Allocating 
such a large array is impractical. Furthermore, because the size of a tree is unknown at compile-time for dynamic mesh 
adaptation, one needs to leave many empty slots to be filled in later, leading to waste of memory.

To illustrate these issues and the associated remedies, consider the mesh elements as shown in Fig. 1. Fig. 1(a), illustrates 
the Morton encoding in two-dimensional space for a quad tree with two levels of adaptation. Figs. 1(b) and 1(c), demon-
strate the indexing and ordering in hash table and in red–black tree approaches, respectively. As we see from Fig. 1(b) the 
integer index is not contiguous anymore (i.e. 0, 4, 8, 9 ...), whereas with a red–black tree approach the Morton order is 
sorted by default and the element indexing complies with the Z-order curve.

To illustrate the collision issue in the hash table approach, let us assume that the initial size of the hash table is 8. 
Now we try to fit the 7 elements, shown in Fig. 1, in the 8 slots by using the remainder operator, which is used in the 
hash function. For elements with hash values of 4 and 12, the remainder operator will give 4 for both elements, which 
is a collision in the 5th slot. In other words, both elements are assigned to the same slot in the hash table. To conform 
to the Z-order curve and have zero collisions at the same time, the size of the array should be at least 12, which is an 
increase of 50%. We also need to allocate extra space for possible refinements that might occur in the next step. Obviously, 
this remedy to avoid collision in the hash table can be prohibitively expensive in terms of memory when a mesh with a 
large number of refinements are considered. Subsequently, one has to relax the no-collision condition and try to use the 
remainder operator to fit the mesh elements in the array. Once the no-collision condition is relaxed, O (1) access can not be 
guaranteed. Another draw back of using a hash table is that rehashing might occur if one does not predict the final octree 
size with a good approximation. We note that rehashing is computationally expensive.

For large-scale multiphysics problems with a computational mesh on the order of hundred million elements and more, 
which are now becoming feasible with ever increasing supercomputing power, allocating extra space for a hash table may 
not be feasible. Paying closer attention to the Z-order curve in Fig. 1 reveals that a sorting process is needed to ensure 
perfect data locality, which is not available in the hash table approach. To address this shortcoming, we propose adopting 
a red–black tree [6] (i.e., instead of using a hash table), as the fundamental data structure in the implementation of a 
Cartesian AMR algorithm. With this proposition we accomplish the following:



Download	English	Version:

https://daneshyari.com/en/article/4967128

Download	Persian	Version:

https://daneshyari.com/article/4967128

Daneshyari.com

https://daneshyari.com/en/article/4967128
https://daneshyari.com/article/4967128
https://daneshyari.com/

