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We study the application of a stabilized continuous Galerkin finite element method 
(CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system 
involves a nonlinear coupling between the fluid pressure, subsurface’s deformation, and 
the fluid phase saturation, and as such, we represent this coupling through an iterative 
procedure. Spatial discretization of the poroelastic system employs the standard linear 
finite element in combination with a numerical diffusion term to maintain stability of the 
algebraic system. Furthermore, direct calculation of the normal velocities from pressure 
and deformation does not entail a locally conservative field. To alleviate this drawback, 
we propose an element based post-processing technique through which local conservation 
can be established. The performance of the method is validated through several examples 
illustrating the convergence of the method, the effectivity of the stabilization term, and the 
ability to achieve locally conservative normal velocities. Finally, the efficacy of the method 
is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

When a mechanical stress such as an external load is applied to a fluid-filled porous medium, a response is triggered, 
thereby changing the volume fraction of the pore spaces. The nature of the response, however, is a function of the stiffness 
of the porous material and the behavior of the fluids that are present in the pore spaces. There are mainly two mechanisms 
governing this fluid-material interaction: (i) the increase in pore pressure, which results in dilation of the porous material 
and (ii) compression of the porous material, which causes a rise in pore pressure if the fluid is unable to escape the medium. 
In response, any occupying fluid will move within the medium in an attempt to balance these changes in pore pressure. 
Poroelasticity theory, originally motivated by the theory of consolidation, studies the simultaneous deformation of a porous 
solid and the flow of pore fluid. The theory has seen applications in areas of geomechanics [1], reservoir engineering [2]
and more recently in biomechanics [3,4]. Some specific applications include modeling of hydraulic fracturing [5], subsidence 
resulting from fluid withdrawal [6], and earthquake engineering [7].

The earliest development of the theory dates back to the early mid-twenties by Terzaghi [8]. He developed a model for 
soil consolidation in one dimension, which was later extended and generalized to three-dimension by Rendulic in 1936 [9]. 
In his earlier work, Terzaghi postulated that the deformation of a porous solid is mainly attributed to rearrangement of 
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system particles; compression of solid particles and of fluid can practically be ignored. This assumption is a good represen-
tation of highly compressible soils such as soft sand and clay. However, it renders the application of the model insufficient 
for some physical problems; such as deformation of highly consolidated porous material (for instance sandstone). Terzaghi’s 
model forms the basis of soil mechanics and has since been subjected to revisions and modifications. The earliest extension 
of the model to linear theory of poroelasticity to incorporate pore fluid compression and compression of particles was first 
developed by Biot in 1935 [9] and in 1941 [10]. Ever since, different reformulations of Biot’s model of poroelasticity have 
emerged. Rice and Cleary’s extension [11] is widely recognized in areas of geophysics. Other variants include works of Biot 
himself [12,13] and Verruijt [6].

The complexity of linear poroelasticity models is inherent in the coupling of the governing equations. Despite the linear-
ity of the model itself, closed form solutions are still difficult to obtain, except for some special conditions, thereby limiting 
the applicability of the model. Numerical methods, such as finite element methods or central finite difference schemes are 
therefore relied upon for approximate solutions. However, naive utilization of these numerical techniques is well known to 
produce pressure solutions with non-physical oscillations.

It is well known that continuous Galerkin finite element approximations (CGFEM) with low order elements perform 
poorly when applied to nearly incompressible elasticity problems. In such situations, poor performance is attributable to 
effects of large Lamé parameter; resulting in the so-called Poisson locking. For instance, it is well-known that using the con-
tinuous piecewise linear finite element space simultaneously (an inf-sup unstable pair) for displacement-pressure subsystem 
causes instability. This results in non-physical oscillations in the discrete pressure solution. To ensure a stable discretization 
and oscillatory-free solutions, some recent studies emphasize choosing a suitable pair of finite element approximation spaces 
for the displacement-pressure subsystem. Popularly used stable pairs include the (Pk, Pk−1) Taylor–Hood elements and the 
(P1 + B3, P1) MINI mixed finite element [14]. Despite their oscillatory-free pressure solution capability, one needs a very 
fine grid to guarantee a smooth pressure solution. Theoretical and numerical studies of such schemes have been widely stud-
ied in [15,16]. More recently, there has been efforts to produce non-oscillatory approximate pressure solutions with lower 
order finite element methods. Some newly developed techniques focus on introducing a “stabilization” term to the Galerkin 
formulation at the discretized level, see [17,18]. Despite the instability of the (P1, P1) scheme, this artificial stabilization 
term has been established to add stability to the scheme [19,20]; thereby reviving its applicability to displacement-pressure 
problems.

The model of poroelasticity has been extensively investigated by Murad et al., see [21–23]. Although most of their re-
cent work focused on statistical properties of poroelastic media, they have also done a lot of analytical work to validate 
their numerical findings. Particular to what follows in this paper is their work on two-phase flow in heterogeneous poroe-
lastic media [21], where a family of locally conservative methods has been developed based on mixed finite elements for 
hydrodynamic and poromechanic equations. In their work, the Raviart–Thomas mixed finite element was applied to the 
hydrodynamic equation while the B-bar method is used to solve the poromechanic equation. Another distinguishing feature 
of their method is the decoupling of the hydrodynamic and geomechanical problems from the transport subsystem. This 
allows for an iterative solution of the hydrodynamic and geomechanical problems to be found at each new time level. Once 
the displacement is obtained at this new time level, porosity is updated based on the mass balance of the solid phase. With 
updated information, the transport subsystem can then be solved for updated fluid saturations.

The present investigation centers on the development of an efficient and accurate numerical method for two-phase flow 
in the heterogeneous poroelastic subsurface. In this regard, two main contributions are offered. Firstly, the geomechanic 
quantities of interest as depicted by the quasi-static Biot’s consolidation model is approximated by the CGFEM using a 
stabilized (P1, P1) element. We utilize a stabilization that involves adding a perturbation to the finite element discretization 
whose robustness was recently established [20]. The adoption of a stabilized (P1, P1) element into settings of this kind 
certainly merits serious attention. This is not only due to its simplicity, but also because of the efficiency it can offer in 
relative comparison to other approaches. The current work serves as a jump-start for further investigations. Furthermore, 
in the framework of two-phase flow, it is imperative to gather derivable quantities from the geomechanics in the form of 
fluid and solid velocity fields that are locally conservative. The locally conservative velocity fields are input to the transport 
equation in which they act as a driving mechanism to move the fluids. Due to the global nature of its formulation, it is well 
known that approximate solutions stemming from CGFEM do not immediately render locally conservative velocity fields. As 
a second contribution, we propose a simple and efficient post-processing procedure to satisfy this need.

To allow for an efficient implementation, we use an operator splitting framework. The basic strategy is to decompose 
the coupled system into several simpler subsystems over a relatively limited range of scales. The approximate solution of 
the coupled system is obtained from a combination of approximate solutions for the individual subsystems. One strong 
motivation for using this operator splitting is that it furnishes an efficient way to use legacy methods that are suitable for 
specific subsystems to tackle multiphysics problems, such as the two-phase flow in the heterogeneous poroelastic subsurface. 
This operator splitting allows for model extensions to be incorporated into the proposed numerical framework in a manner 
that is relatively straightforward. As mentioned earlier, in this application the CGFEM is used for solving the geomechanic 
subsystem. Using a post-processing step this approximate solution is then used to update solutions of the transport equation. 
Furthermore, the solution of the transport equation is suitably handled by the vertex-centered finite volume discretization 
and upwinding technique.

The rest of this paper is organized as follows. Discussion on the mathematical model culminating in the set of governing 
partial differential equations is conducted in Section 2. The methodology for finding the approximate solution of the mathe-
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