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Implicit schemes are popular methods for the integration of time dependent PDEs such 
as hyperbolic and parabolic PDEs. However the necessity to solve corresponding linear 
systems at each time step constitutes a complexity bottleneck in their application to 
PDEs with rough coefficients. We present a generalization of gamblets introduced in [62]
enabling the resolution of these implicit systems in near-linear complexity and provide 
rigorous a-priori error bounds on the resulting numerical approximations of hyperbolic 
and parabolic PDEs. These generalized gamblets induce a multiresolution decomposition of 
the solution space that is adapted to both the underlying (hyperbolic and parabolic) PDE 
(and the system of ODEs resulting from space discretization) and to the time-steps of the 
numerical scheme.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Implicit schemes are popular and powerful methods for the integration of time dependent PDEs such as hyperbolic and 
parabolic PDEs [95,44,43,11]. However the necessity to solve corresponding linear systems at each time step constitutes a 
complexity bottleneck in their application to PDEs with rough coefficients.

Although multigrid methods [34,12,36] have been successfully generalized to time dependent equations [50,96,95,109,
33,105,44], their convergence rate can be severely affected by the lack of regularity of the coefficients [101]. While some 
degree of robustness can be achieved with algebraic multigrid [80], multilevel finite element splitting [111], hierarchical 
basis multigrid [6], multilevel preconditioning [97], stabilized hierarchical basis methods [98] and energy minimization [52,
101,108], the design of multigrid/multiresolution methods that are provably robust with respect to rough (L∞) coefficients 
was an open problem of practical importance [13] addressed in [62] with the introduction of gamblets (in O(N ln3d N)

complexity for the first solve and O(N lnd+1 N) for subsequent solves to achieve grid-size accuracy in H1-norm for elliptic 
problems). Numerical evidence suggests the robustness of low rank matrix decomposition based methods such as the Fast 
Multipole Method [35,110], Hierarchical matrices [37,7] and Hierarchical Interpolative Factorization [42] and while this 
robustness can be proven rigorously for Hierarchical matrices [7] (the complexity of Hierarchical matrices is O(N ln2d+8 N)

to achieve grid-size accuracy in L2-norm for elliptic problems [7]) one may wonder if it is possible to rigorously lower this 
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known complexity bound and achieve (at the same time) a meaningful multi-resolution decomposition of the solution space 
for time dependent problems. Although classical wavelet based methods [14,10,28] enable a multi-resolution decomposition 
of the solution space their performance is also affected by the regularity of coefficients because they are not adapted to the 
underlying PDEs.

In section 2 we present a generalization of gamblets introduced in [62] and apply them in sections 3 and 4 to the 
implicit schemes for hyperbolic and parabolic PDEs with rough coefficients. As in [62] these generalized gamblets (1) are 
elementary solutions of hierarchical information games associated with the process of computing with partial information 
and limited resources, (2) have a natural Bayesian interpretation under the mixed strategy emerging from the game theoretic 
formulation, (3) induce a multi-resolution decomposition of the solution space that is adapted to the space-time numerical 
discretization of the underlying PDE and propagate the solution independently (at each time-step) in each sub-band of the 
decomposition. The complexity of pre-computing generalized gamblets is N ln3d N and that of propagating the solution is 
N lnd+1 N (at each time step, to achieve grid-size accuracy in energy norm). Although real valued gamblets are sufficient 
for first and second order implicit schemes, higher order implicit schemes may require complex valued gamblets. These 
complex valued gamblets are introduced and their application to higher order schemes is illustrated in Section 5. Observing 
that the multiresolution decomposition induced by gamblets has properties that are similar to an eigenspace decomposition, 
we introduce, in Section 6, a multi-time-step scheme for solving parabolic PDEs (with rough coefficients) in O(N ln3d+1 N)

complexity.
Gamblets are derived from a Game Theoretic approach to Numerical Analysis [62,66] which could be seen as decision 

theory approach to numerical analysis [100,65]. We refer to the information based complexity literature for an understand-
ing of the natural connection between the notions of computing with partial/priced information and numerical analysis (we 
refer in particular to [106,74,94,55,107,79,56]). Although statistical approaches to numerical analysis [26,77,88,48,81,47,84,
57,58] have, in the past, received little attention, perhaps due to the counterintuitive nature of the process of randomiz-
ing a known function, the possibilities offered by combining numerical uncertainties/errors with model uncertainties/errors 
appear to be stimulating their reemergence [19,83,61,41,40,15,23,78,75,66,82]. We refer in particular to [85,83,19] for ODEs 
and to [61,62,66,20,82] for PDEs. Here the game theoretic approach of [62] is applied to both PDEs and the system of ODEs 
resulting from their discretization. The multiscale nature of the underlying PDEs results in the stiffness of the correspond-
ing ODEs (these ODEs are not only stiff [91,93,92] they are also characterized by a large range/continuum of time scales 
[59,60,8]). Although it is natural to integrate such ODEs by an eigenspace decomposition when the dimension of the system 
of ODEs is small, the cost of such an approach is in general prohibitive. It is to some degree surprising that gamblets have 
properties that are similar to eigenfunctions, or more precisely Wannier basis functions [103,53] (i.e. linear combinations of 
eigenfunctions concentrated around a given eigenvalue that are also concentrated in space), while preserving the near-linear 
complexity of the integration.

Since (see [62]) Gamblets are also natural basis functions for numerical homogenization [104,3,46,30,70,31,9,2,25,90,102,
72,51,73,45,76] they can also be employed to achieve sub-linear complexity under sufficient regularity of source terms and 
initial conditions (see [71,69,72] and Remark 4.3).

We also refer to [66] for a generalization of gamblets to arbitrary continuous linear bijections on Banach spaces (see 
also [82] for their application to the inversion, compression and approximate PCA of dense kernel matrices at near-linear 
complexity). As discussed in [66] gamblets also provide a solution to the problem of identifying operator adapted wavelets 
[21,4,32,17,18,24,1,89,99,87] satisfying three essential properties (see [86,87] for an overview): (a) scale-orthogonality (with 
respect to the operator scalar product to ensure block-diagonal stiffness matrices), (b) local support (or rapid decay) of the 
wavelets (to ensures that the individual blocks are sparse) and (c) Riesz stability in the energy norm (to ensure that the 
blocks are well-conditioned).

2. Gamblets

We will, in this section, present a generalization of the gamblets introduced in [62]. Since the proofs of the results 
presented in this section are similar to those given in [62] we will refer the reader to [62] and to [66] for these proofs.

2.1. The PDE

Let ζ > 0. Consider the PDE{
4
ζ 2 μ(x)u(x) − div

(
a(x)∇u(x)

) = g(x) x ∈ �;
u = 0 on ∂�,

(2.1)

where � is a bounded domain in Rd (of arbitrary dimension d ∈ N
∗) with piecewise Lipschitz boundary, a is a symmetric, 

uniformly elliptic d × d matrix with entries in L∞(�) and such that for all x ∈ � and l ∈ R
d ,

λmin(a)|l|2 ≤ lT a(x)l ≤ λmax(a)|l|2, (2.2)

and μ ∈ L∞(�) with for all x ∈ �,
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