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In this paper a method is presented for the application of energy-dependent spatial 
meshes applied to the multigroup, second-order, even-parity form of the neutron transport 
equation using Isogeometric Analysis (IGA). The computation of the inter-group regenera-
tive source terms is based on conservative interpolation by Galerkin projection. The 
use of Non-Uniform Rational B-splines (NURBS) from the original computer-aided design 
(CAD) model allows for efficient implementation and calculation of the spatial projection 
operations while avoiding the complications of matching different geometric approxima-
tions faced by traditional finite element methods (FEM). The rate-of-convergence was 
verified using the method of manufactured solutions (MMS) and found to preserve the 
theoretical rates when interpolating between spatial meshes of different refinements. The 
scheme’s numerical efficiency was then studied using a series of two-energy group pincell 
test cases where a significant saving in the number of degrees-of-freedom can be found 
if the energy group with a complex variation in the solution is refined more than an 
energy group with a simpler solution function. Finally, the method was applied to a 
heterogeneous, seven-group reactor pincell where the spatial meshes for each energy group 
were adaptively selected for refinement. It was observed that by refining selected energy 
groups a reduction in the total number of degrees-of-freedom for the same total L2 error 
can be obtained.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The neutron transport equation is a partial-integro-differential equation (PIDE) based upon a linearized version of the 
Boltzmann transport equation; commonly used in the field of statistical mechanics to model the average statistical behaviour
of interacting gases of particles, atoms or molecules. The transport equation is used to model the statistical behaviour of 
neutrons interacting within a host medium such as a nuclear reactor core or a radiation shield [1]. The behaviour of the 
neutrons is described using the angular flux which is the dependent variable in the neutron transport equation. The angular 
flux is a function of a seven-dimensional phase space of independent variables consisting of three dimensions for the spatial 
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variation x, y and z; two dimensions for the angular variation θ and χ ; one dimension for the energy variation E and finally 
one variable for the temporal variation t . To accurately represent the angular flux sufficient resolution is required in each of 
the seven dimensions of the phase space. Combined with the large and geometrically complex nuclear reactor core designs 
and radiation shields the solution of this equation represents a significant challenge even for contemporary state-of-the-art 
numerical algorithms and high performance computing (HPC) architectures.

The variation of the angular flux with energy is usually very complex and represents a key challenge when solving the 
neutron transport equation. This is mainly due to the complicated variation of the interaction effects of the neutrons with 
the host media; which is represented by the neutron interaction cross sections. This complicated energy dependence of 
the cross sections leads the angular flux to have a significant dependence on energy. One common approach to discretise 
the energy variation of the neutron transport equation is to assume that the energy variation can be approximated by 
integral quantities over a number of discrete energy groups each with a prescribed upper and lower energy bound, the 
multigroup approximation. The energy range of neutrons typically spans between less than 1 eV to several MeV depending 
upon the nature of the problem being solved. Therefore, potentially a significant number of energy groups may be required 
to represent the energy variation of the physical phenomena described by the neutron transport equation [2].

Current deterministic reactor physics codes used in the industry for core and radiation shield design such as PANTHER 
[3] and ATILLA [4] utilize a common spatial mesh for each energy group in order to solve the neutron transport equation. 
However, the spatial variation of the angular flux will, in general, vary significantly with the energy of the neutrons; as a 
consequence of the energy variation of the cross sections. Therefore using the same spatial mesh for each energy group 
will not prove optimal. In order to optimise accuracy and computational efficiency it is more desirable to use different 
spatial meshes for each energy group. However, this represents another series of significant challenges for the discretisation 
scheme in terms of conservatively interpolating source and solution functions from one spatial mesh to another as well 
as preserving the exact geometry of the solution domain. The challenge of interpolating the numerical representation of a 
function between different spatial meshes is not unique to the application of the multigroup form of the neutron transport 
equation. In a wider context, function interpolation is required in a diverse range of situations; for example in the coupling 
of a reactor physics code to a computational fluid dynamics (CFD) code [5], visualisation and comparison of data sets 
computed on different spatial grids and the interpolation of a solution function onto a new grid using adaptive mesh 
refinement (AMR) [6].

The first application of group-dependent spatial meshes was by Wang et al. who presented an adaptive mesh refinement 
(AMR) scheme allowing the use of unique meshes for each energy group applied to the neutron diffusion equation [7]. 
Their approach used hierarchically refined finite element meshes from a common coarse grid. The use of a common coarse 
grid limits this approach to Cartesian geometries (or geometries consisting solely of planar interfaces) or sacrificing any 
improvements in the representation of the geometry as the mesh is refined. In Baker et al. a method allowing for the 
conservative interpolation between unstructured triangular finite element meshes was presented [2] based upon the work 
of Farrell and Maddison [8]. This approach required the generation of a ‘super-mesh’ to facilitate the transfer of information 
from one group to another. However, the two spatial meshes required no shared underlying structure. A reduction in the 
total number of finite elements required to obtain the same numerical accuracy was presented. Goffin et al. also used this 
methodology for goal-based AMR [9]. As in Wang et al., all of the research so far in this area has been demonstrated for 
Cartesian geometries only.

Isogeometric Analysis (IGA) is a generalisation of the finite element method (FEM) where the mathematical description of 
a computer-aided design (CAD) model, typically Non-Uniform Rational B-splines (NURBS), is used as the mathematical basis 
for analysis [10]. By utilising a geometry description based upon the original CAD model the mesh is exact from the coarsest 
level and further refinement to improve the fidelity of the solution does not alter the description of the geometry in either 
the parametric or real space. IGA has been extended to use locally refineable T-spline patches remedying the limitation of 
the tensor-product refinement of the standard NURBS representation [11]. IGA has been applied to a wide variety of physics 
and engineering disciplines including electromagnetics [12], computational fluid dynamics (CFD) [13,14] and solid dynamics 
[10].

In the field of reactor physics, IGA was first applied to the mono-energetic neutron diffusion equation by Hall et al. [15]. 
This work was later extended by Welch et al. who applied IGA to the multigroup form of the neutron diffusion equation for 
a quarter-core reactor geometry [16]. In these studies it was found that the exact representation of the problem geometry 
significantly improved the accuracy of the obtained solution for the same computational cost of equivalent finite element 
calculations. It was also found that the increased basis function continuity available to B-splines and NURBS significantly 
reduced the required computational effort to obtain a given level of solution accuracy. In addition to applications to the neu-
tron diffusion equation, IGA has been applied to the first-order form of the neutron transport equation with a discontinuous 
Galerkin (DG) spatial discretisation and SN angular discretisation [17].

The NURBS patches used in IGA have a series of useful properties that make them suitable for use in energy-dependent 
mesh methods. As the geometry is exact at the coarsest level (the CAD description) and further refinements do not change 
the physical geometry, a NURBS patch can be refined to suit the physics of each energy group independently with each 
representation conforming to the original geometry. In addition, as the parametric description does not change under re-
finement the projective matrices required for the function projection can be efficiently computed without the need to 
generate a physical ‘super-mesh’.
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