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A numerical scheme to compute the spectrum of a large class of self-adjoint extensions of 
the Laplace–Beltrami operator on manifolds with boundary in any dimension is presented. 
The algorithm is based on the characterisation of a large class of self-adjoint extensions of 
Laplace–Beltrami operators in terms of their associated quadratic forms. The convergence 
of the scheme is proved. A two-dimensional version of the algorithm is implemented 
effectively and several numerical examples are computed showing that the algorithm treats 
in a unified way a wide variety of boundary conditions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The study of self-adjoint extensions of symmetric operators plays a fundamental role not only in the foundations, but 
increasingly so in the applications of Quantum Mechanics as they determine the spectrum of the corresponding system. 
Among them, it is paramount the role played by the Laplace–Beltrami operator, as it corresponds to the to the time inde-
pendent Schrödinger equation for a free particle.

When boundaries are present such operators can be defined easily on a domain where it is symmetric but usually not 
self-adjoint. Self-adjointness is a crucial property that guarantees the reality of the spectrum. Moreover, Stone’s Theorem 
establishes that it also guarantees the unitarity of the evolution governed by the Schrödinger equation. See, e.g. [44, Chap-
ter X] for further details and motivation. Starting from a symmetric operator one needs to choose a self-adjoint extension 
of it, which in general is not unique. In the present context of differential operators on manifolds with boundaries this is 
done by selecting appropriately boundary conditions. Different boundary conditions represent different physical situations, 
see for instance the reviews [6,30] and references therein. Consider the Laplace operator on an interval. Dirichlet boundary 
conditions represent a particle trapped in a box while quasiperiodic boundary conditions represent that the particle is mov-
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ing on a closed curve surrounding a magnetic field [5]. Other boundary conditions represent other physical situations. For 
instance, they can be chosen to represent point like interactions [19].

In dimension one, the problem of characterising self-adjoint extensions and computing their spectrum and eigenvectors 
was addressed in [29]. However, the algorithm proposed there cannot be applied in dimension higher than one in a straight-
forward way. The main reason for this is that in dimension higher than one the space of self-adjoint extensions is infinite 
dimensional [23,27]. In dimension one, the self-adjoint extensions can be parameterised by the set of unitary operators 
acting on a finite dimensional vector space and therefore they can be implemented exactly. This is not the case in dimen-
sion higher than one where in general one needs also to approximate the boundary conditions. This needs to be handled 
carefully when proving the convergence of a numerical scheme approximating the spectrum. The numerical study of self-
adjoint extensions for the Laplace–Beltrami operator in dimension higher than one is also interesting from a mathematical 
perspective since it requires the development of finite element methods (FEM) that use completely different constructions 
of boundary elements than for the already well developed Dirichlet and Neumann boundary conditions, cf. [8,13,42].

New quantum technologies and applications require the implementation of boundary conditions that go beyond the usual 
ones in order to have a good description of their properties. For instance, Quantum Hall effect [36,12], superconductors sur-
rounded by insulators [3,4], Casimir Effect [41,34,2], computation of solutions of Bloch periodic wave-functions on periodic 
lattices [47] and other novel proposals like the generation of entanglement or the study of topology change by modifying 
the boundary conditions [28,40]. Self-adjoint boundary conditions can also be used to model physical situations like point 
interactions [19] or resonators coupled to thin antennas [15,21,22]. It is important to notice that the addition of regular 
potentials does not jeopardise the self-adjointness of the domain of a differential operator, cf. [44,31]. Hence, the analysis 
carried out in this article can be used straightforwardly for Schrödinger operators by just computing the contribution of the 
potential as it is done in standard FEM.

In this context, boundary conditions are going to be treated as the only input parameter of the problem and the geometry 
will remain fixed. In the standard FEM approach, one needs to distinguish a priori which boundary conditions are essential 
and which ones are natural in order to construct the appropriate FEM. In contrast, the algorithm presented here treats 
natural and essential boundary conditions in a unified way. It is able to deal with a diversity of boundary conditions like 
Dirichlet, Neumann, Robin, mixed, periodic, quasi-periodic (also called Bloch-periodic), or even more general ones like those 
appearing in [26] by just modifying the input parameters.

This article focuses on the construction and analysis of the aforementioned algorithm to show its capabilities. Moreover, 
the convergence conditions of this approach are proven not only for the particular realisation presented here, but for a 
general situation. The approach for the construction of finite elements at the boundary, as it is proposed here, should be 
taken as a complement to already existent and well-established all-purpose routines, for instance, the one presented in [46]. 
However, standard approaches do not allow to solve the problem for the variety of boundary conditions that can be handled 
with the present scheme. Implementation of more efficient approaches to speed up convergence will be considered in the 
future. These include mesh refinements or increasing the polynomial degree of the finite elements, i.e. implementation of 
h-method or p-method, as well as other recent developments like including probabilistic indetermination of the input data 
as it is done in [7,10,11]. These latter considerations will play a relevant role when considering more complex geometries 
than the ones considered here.

The implementation of the FEM to cope with boundary conditions defined by unitary operators at the boundary is per-
formed by adding a rim of boundary elements to the domain that serve to implement the finite dimensional approximation 
of the domain of the given operator. Such elements have a particular structure that has been carefully crafted to guarantee 
the convergence of the domains and the quadratic forms approximating the original problem. In order to implement all 
these different boundary conditions it is only needed to add the aforementioned rim of boundary elements. In the interior 
of the domain, the bulk, one can use well developed numerical schemes that are already available, for instance [46].

The article is organised as follows. In Section 2 we introduce the family of self-adjoint extensions of the Laplace–Beltrami 
operator that is suitable for the numerical approximation of its spectrum. In Section 3 we provide sufficient conditions on 
the approximants of the spectral problem to guarantee convergence to the exact solutions and in Section 4 we construct 
them explicitly. In order to test the performance of the scheme we have built a standard finite element method at the bulk 
and we have complemented it with the proposed construction at the boundary. In Section 5 several numerical experiments 
with applications in Physics have been solved to show the capabilities of the proposed scheme. The pseudocode of the 
implementation can be found in the appendix.

2. Self-adjoint extensions of the Laplace–Beltrami operator and unitary operators at the boundary

In this section we introduce the family of operators that will be addressed by the numerical algorithm. We will present 
the most important results in order to keep the article as self-contained as possible. This will also serve to fix the notation.

Let (�, ∂�, η) be a smooth orientable Riemannian manifold with metric η and smooth compact boundary ∂�. We 
will denote as C∞(�) the space of smooth functions on the Riemannian manifold �, and by C∞

c (�) the space of smooth 
functions with compact support in the interior of �. The Riemannian volume form is denoted by dμη .

The Laplace–Beltrami Operator associated to the Riemannian manifold (�, ∂�, η) is the second order differential oper-
ator �η : C∞(�) → C∞(�) given in local coordinates (xi) on � by
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