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A new second-order numerical scheme based on an operator splitting is proposed for 
the Godunov–Peshkov–Romenski model of continuum mechanics. The homogeneous part 
of the system is solved with a finite volume method based on a WENO reconstruction, 
and the temporal ODEs are solved using some analytic results presented here. Whilst it 
is not possible to attain arbitrary-order accuracy with this scheme (as with ADER-WENO 
schemes used previously), the attainable order of accuracy is often sufficient, and solutions 
are computationally cheap when compared with other available schemes. The new scheme 
is compared with an ADER-WENO scheme for various test cases, and a convergence study 
is undertaken to demonstrate its order of accuracy.
© 2017 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Background

1.1. Motivation

The Godunov–Peshkov–Romenski model of continuum mechanics (as described in 1.2) presents an exciting possibility of 
being able to describe both fluids and solids within the same mathematical framework. This has the potential to streamline 
development of simulation software by reducing the number of different systems of equations that require solvers, and 
cutting down on the amount of theoretical work required, for example in the treatment of interfaces in multimaterial prob-
lems. In addition to this, the hyperbolic nature of the GPR model ensures that the nonphysical instantaneous transmission of 
information appearing in certain non-hyperbolic models (such as the Navier–Stokes equations) cannot occur. Parallelization 
also tends to be easier with hyperbolic models, allowing us to leverage the great advances that have been made in parallel 
computing architectures in recent years.

At the time of writing, the GPR model has been solved for a variety of fluid and solid problems using the ADER-WENO 
method (Dumbser et al. [8], Boscheri et al. [4]). ADER-WENO methods (described in 1.3) are extremely effective in producing 
arbitrarily-high order solutions to hyperbolic systems of PDEs, but in some situations their accompanying computational cost 
may prove burdensome. A new method is presented in this study that is simple to implement and computationally cheaper 
than a corresponding ADER-WENO method if only second order accuracy is required. This may prove useful in the design 
of simulation software addressing problems in which not just accuracy but also speed and usability are of paramount 
importance.
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1.2. The GPR model

The GPR model, first introduced in Peshkov and Romenski [23], has its roots in Godunov and Romenski’s 1970s model of 
elastoplastic deformation (see Godunov and Romenski [14]). It was expanded upon in Dumbser et al. [8] to include thermal 
conduction. This expanded model takes the following form:
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ρ , v, p, δ, σ , T , E , q retain their usual meanings. θ1 and θ2 are positive scalar functions, chosen according to the properties 
of the material being modeled. A is the distortion tensor (containing information about the deformation and rotation of 
material elements), J is the thermal impulse vector (a thermal analogue of momentum), τ1 is the strain dissipation time, 
and τ2 is the thermal impulse relaxation time. ψ = ∂ E

∂ A and H = ∂ E
∂ J .

The following definitions are given:
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∂ρ
(2a)

σ = −ρ AT ∂ E

∂ A
(2b)

T = ∂ E

∂s
(2c)

q = ∂ E

∂s

∂ E

∂ J
(2d)

To close the system, the equation of state (EOS) must be specified, from which the above quantities and the sources can be 
derived. E is the sum of the contributions of the energies at the molecular scale (microscale), the material element1 scale 
(mesoscale), and the flow scale (macroscale):

E = E1 (ρ, p) + E2 (A, J ) + E3 (v) (3)

The EOS used in this study (and described in the following passages) is taken from Dumbser et al. [8]. It should be noted, 
however, that this is just one particular choice, and there are many others that may be used.

For an ideal or stiffened gas, E1 is given by:

E1 = p + γ p∞
(γ − 1)ρ

(4)

where p∞ = 0 for an ideal gas.
E2 is chosen to have the following quadratic form:

E2 = c2
s

4
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cs is the characteristic velocity of propagation of transverse perturbations. α is a constant related to the characteristic 
velocity of propagation of heat waves:

ch = α

ρ

√
T

cv
(6)

G = AT A is the Gramian matrix of the distortion tensor, and dev (G) is the deviator (trace-free part) of G:

1 The concept of a material element corresponds to that of a fluid parcel from fluid dynamics, applied to both fluids and solids.
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