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Single-cone finite difference scheme for the (2+1)D Dirac von Neumann
equation

Walter Pötz∗, Magdalena Schreilechner

Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz 5, 8010 Graz, Austria

Abstract

An explicit finite difference scheme is presented for the von Neumann equation for (2+1)D Dirac fermions.
It is founded upon a staggered space-time grid which ensures a single-cone energy dispersion and performs
the time-derivative in one sweep using a three-step leap-frog procedure. It enables a space-time-resolved
numerical treatment of the mixed-state dynamics of Dirac fermions within the effective single-particle den-
sity matrix formalism. Energy-momentum dispersion, stability and convergence properties are derived.
Elementary numerical tests to demonstrate stability properties use parameters which pertain to topological
insulator surface states. A method for the simulation of charge injection from an electric contact is presented
and tested numerically. Potential extensions of the scheme to a Dirac-Lindblad equation, real-space-time
Green’s function formulations, and higher-order finite-difference schemes are discussed.
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1. Introduction - preliminaries and definitions

1.1. The Dirac equation and numerical schemes

In the context of graphene and, more recently, topological insulator surface states, the Dirac equation
has received renewed interest within the physics community. Introduced by P. A. M. Dirac in 1928, the
(3+1)D Dirac equation has been the standard model for relativistic spin-1/2 particles. It is a key ingredient
to the Standard Model of elementary particle physics[1–5]. In condensed matter and atomic physics its non-
relativistic limit provides the spin-orbit interaction, which is instrumental to an understanding of atomic
spectra and represents the foundation for the entire field of spintronics[6]. In electronic structure calculations
the full Dirac equation has been used to describe inner shell electrons[7, 8]. The (1+1)D and (2+1)D
versions of the Dirac equation allow a two-dimensional representation of the Clifford algebra. In the early
days of quantum physics they were used for model studies, however, condensed matter physics has recently
delivered spectacular physical realizations of (2+1)D Dirac fermions as the low energy electronic excitations
in graphene and topological insulators (TIs)[9–14].

With the interest in graphene and TIs as components of electronic and spintronic devices efficient schemes
for the numerical solution of the (2+1)D Dirac equation have become desirable. Numerical approaches for
solving the Dirac equation have taken several approaches. For investigations of relativistic electrons in
atomic physics, a (2+1)D fast Fourier transformation (FFT) split-operator code was used [15, 16]. In
such an approach, FFT between the space and momentum representation is used to compute the Dirac
propagator. The computational effort generally scales in O(N lnN), where N is the number of grid-points.
An efficient code using operator splitting in real space was introduced for the (3+1)D case [17]. It leads to
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