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This article presents a general approach akin to domain-decomposition methods to solve 
a single linear PDE, but where each subdomain of a partitioned domain is associated to 
a distinct variational formulation coming from a mutually well-posed family of broken
variational formulations of the original PDE. It can be exploited to solve challenging 
problems in a variety of physical scenarios where stability or a particular mode of 
convergence is desired in a part of the domain. The linear elasticity equations are solved 
in this work, but the approach can be applied to other equations as well. The broken 
variational formulations, which are essentially extensions of more standard formulations, 
are characterized by the presence of mesh-dependent broken test spaces and interface trial 
variables at the boundaries of the elements of the mesh. This allows necessary information 
to be naturally transmitted between adjacent subdomains, resulting in coupled variational 
formulations which are then proved to be globally well-posed. They are solved numerically 
using the DPG methodology, which is especially crafted to produce stable discretizations of 
broken formulations. Finally, expected convergence rates are verified in two different and 
illustrative examples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many equations arising from physical applications can be given a variational formulation, which can then be analyzed 
using functional analysis, and solved using a discrete version of the formulation and the finite element method [12,29]. In 
fact, for a fixed set of equations, there may even be multiple variational formulations which are essentially equivalent to 
the initial equations. Typically, some of these formulations have significant advantages and disadvantages over the other 
formulations. For example, in linear elasticity, the classical formulation coming from the principle of virtual work is well-
known to be computationally efficient to solve with the Galerkin method, but is subject to volumetric locking phenomena 
for nearly incompressible materials [29]. On the other hand, the Hellinger–Reissner mixed formulation is not as efficient, 
but it does remain robustly well-posed for nearly incompressible materials and produces a locally conservative stress tensor 
[22,6].

This article studies the scenario where distinct variational formulations are implemented in different subdomains of 
the same physical domain. This can be useful in situations where a certain behavior of the equations to be solved is 
known (or expected) in particular parts of the domain. Hence, in each region one can choose a variational formulation 

* Corresponding author.
E-mail address: brendan@ices.utexas.edu (B. Keith).

http://dx.doi.org/10.1016/j.jcp.2017.07.051
0021-9991/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2017.07.051
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:brendan@ices.utexas.edu
http://dx.doi.org/10.1016/j.jcp.2017.07.051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.07.051&domain=pdf


716 F. Fuentes et al. / Journal of Computational Physics 348 (2017) 715–731

which is well-suited to the expected behavior. For example, consider a material with heterogeneous material properties 
varying within the domain. The properties can vary continuously, as in cloaking applications or biological materials, or 
discontinuously, as in multi-material problems. Then, in the parts of the domain where it can be an issue (e.g. a nearly 
incompressible material in linear elasticity), one can choose a variational formulation that is robustly well-posed with 
respect to the material properties. In the remaining regions, where such robustness is not fundamental, one can choose 
a more computationally efficient formulation. Another example occurs when a near singularity is expected in a particular 
area, so that one would hope to use a variational formulation (with possibly an associated adaptivity scheme) which is 
desirable in that subdomain, but not necessarily in the entire physical domain [34].

The main issue with such an implementation arises at the interfaces between the two subdomains having distinct vari-
ational formulations. At this interface, information must pass between the two subdomains to enable communication. This 
imposes a coupling with both theoretical and practical compatibility issues which can be difficult to resolve and analyze. 
Moreover, the coupling must be constructed properly so that the entire problem is well-posed. This is not immediate, even 
if each of the interacting variational formulations is well-posed when considered independently across the whole domain.

At the theoretical and infinite-dimensional level, an attractive possibility that naturally unburdens the compatibility 
and well-posedness requirements is the use of broken variational formulations. These mesh-dependent formulations are 
extensions of the usual variational formulations to the case involving broken (or discontinuous) test spaces. They first 
arose in the analysis of the DPG methodology, which is a minimum residual method with broken test spaces [16–18]. 
As will be seen, a family of distinct broken variational formulations can originate from the same system of equations 
through variational testing and by integrating by parts in different ways. As expected, the formulations in the family will 
be closely related to each other. In fact, for many systems of equations, the collection of formulations in each associated 
family can be shown to be mutually well-posed [9,30,15]. More importantly, the broken formulations in the family will be 
observed to inescapably possess interface variable unknowns which are a desirable means of communicating the necessary 
solution variable information across subdomains. This is what allows introducing a proper definition of coupled variational 
formulations, which will later be proved to be globally well-posed.

To actually compute approximate solutions to such a coupled system, one needs a method having discrete trial and 
test spaces that together retain well-posedness (i.e. numerical stability) [3,5]. This is easily achieved by use of the practical 
DPG methodology, the very method which motivated the systematic study of broken variational formulations. Indeed, given 
a discrete trial space, the DPG methodology is especially crafted to approximate an optimal test space which reproduces 
the stability of the underlying infinite-dimensional broken variational formulation [18]. Due to this unique design, it can be 
used with often discarded variational formulations which have different trial and test spaces, such as ultraweak formulations 
[18,33,7]. Apart from stability, the methodology carries other significant advantages including a well-behaved a posteriori 
error estimator for use in adaptive methods and a parallelizable assembly structure allowing local computation of optimal 
test functions from a standard (yet enriched) discretization of the underlying functional spaces. However, the method is 
sometimes computationally intensive, because, when compared to standard methods, it typically comes at the cost of adding 
degrees of freedom along with some extra local computations [32].

The purpose of this work is to demonstrate the use of the DPG methodology in solving the equations of linear elastic-
ity via coupled variational formulations. The family of variational formulations we study was introduced in [30], where all 
formulations were shown to be simultaneously well-posed. Here, broken formulations will be shown to naturally dispose 
of many complications arising with the compatibility and well-posedness of coupled variational formulations. Moreover, 
the use of the DPG methodology will corroborate expected theoretical convergence results. Examples showing the viability 
of the approach at a practical level will be illustrated, including a case where the demanding scenario of a fully incom-
pressible material is considered. This last case has physical applications in modeling steel braided rubber hoses and even 
stents.

For the treatment of the DPG methodology as it applies to the equations of linear elasticity, it is worth highlighting 
[4,26,8,30]. Regarding the coupling of formulations, similarity exists between the approach in this work and that taken in 
[27] (used for elliptic transmission problems). There, a variational formulation similar to those considered here is coupled 
with a variational formulation composed of boundary integral operators. Afterward, the coupled formulation is discretized 
with the DPG methodology throughout the entire computational domain. A remark is also warranted for the contributions 
in [24,25] where the ideas in [27] are extended to couple the DPG methodology with more standard boundary element 
methods (BEMs), so that different discretization methods are considered across the domain.

This article is organized as follows. In Section 2 a family of variational formulations equivalent to the equations of linear 
elasticity are introduced, followed by the associated family of broken variational formulations. In Section 3 coupled varia-
tional formulations are described. The distinct broken formulations are shown to be compatible across common interfaces 
and the coupled formulations are proved to be well-posed. In Section 4 the DPG methodology used to solve the coupled for-
mulations is outlined and novel linear algebra improvements are described. Then, in Section 5 two examples are exhibited, 
numerically solved, and discussed in detail. The last example is a physically-relevant sheathed hose, for which a benchmark 
exact solution is derived.
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