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a  b  s  t  r  a  c  t

A  new  hybrid  approach  for dynamic  optimization  problems  with  continuous  search  spaces  is  presented.
The  proposed  approach  hybridizes  efficient  features  of  the  particle  swarm  optimization  in  tracking
dynamic  changes  with  a new  evolutionary  procedure.  In the  proposed  dynamic  hybrid  PSO  (DHPSO)
algorithm,  the  swarm  size  is  varied  in  a self-regulatory  manner.  Inspired  from  the  microbial  life,  the par-
ticles can  reproduce  infants  and  the  old  ones  die.  The  infants  are  especially  reproduced  by  high  potential
particles  and  located  near  the  local  optimum  points,  using  the  quadratic  interpolation  method.  The  algo-
rithm  is  adapted  to  perform  in  continuous  search  spaces,  utilizing  continuous  movement  of  the  particles
and using  Euclidian  norm  to define  the  neighborhood  in  the  reproduction  procedure.  The  performance
of  the  new  proposed  approach  is  tested  against  various  benchmark  problems  and  compared  with  those
of  some  other  heuristic  optimization  algorithms.  In  this  regard,  different  types  of dynamic  environments
including  periodic,  linear  and  random  changes  are  taken  with  different  performance  metrics  such  as
real-time error,  offline  performance  and  offline  error.  The  results  indicate  a desirable  better  efficiency  of
the  new  algorithm  over  the  existing  ones.

© 2011  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In most real-world optimization problems, the environment
changes along the time. Trajectory optimization of autonomous
vehicles through complex environments, constructing financial
trading models in changing market conditions, data mining in con-
tinuously updating databases and vehicle routing in dynamic traffic
networks are examples of dynamic optimization problems (DOPs).

The dynamic nature of problems imposes great challenges to the
basic optimization techniques. Some new capabilities are required
to be included into the optimization algorithms, i.e. detecting the
environment changes, and responding to the changed environ-
ment.

In order to mathematically model the dynamic changes, Eber-
hart and Shi [1] defined three dynamic environment categories. For
the first, the optimum location changes in the search space. For the
second category, the optimum location remains the same, but the
optimum value changes. Finally, for the third category of dynamic
environments, both the location and the value of the optimum
change. Branke and Schmeck [2] suggest four criteria for dynamic
environments; frequency of changes (how often the environment
changes), severity of changes (how strongly the environment
is changing from small changes to completely new situations),
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predictability of changes (whether there is a pattern or trend in
changes) and the cycle length (how often the optimum returns or
appears close to previous locations). Angeline [3] has introduced
three different types of dynamic changes: linear (changes hap-
pen linearly), circular (changes are periodic), and random dynamic
(changes are random).

In the behavioral study of biological swarms, an interesting
aspect is the exhibition of complex behaviors despite the simplic-
ity of individual behaviors. Inspired by these organisms, efficient
algorithms like ant colony optimization (ACO) and particle swarm
optimization (PSO) have been developed. These algorithms have
been used successfully to solve difficult and complex real-world
problems [4].

ACO was  first proposed by Dorigo and colleagues [5,6] as a
multi-agent approach to solve difficult combinatorial optimization
problems. The main idea utilized in ACO has been adopted from the
ant’s pheromone trails-laying behavior, which is an indirect form
of communication, mediated by modifications of the environment.
Several adaptations of ACO to continuous optimization problems
have been proposed in the literature [7–14], the last three are
directly inspired from the ant’s pheromone trails-laying behavior.
The continuous interacting ant colony (CIAC) [9] has been extended
to a dynamic hybrid CIAC (DHCIAC) [10]; in DHCIAC, ACO is used
for global search and dynamic simplex for the local search. Tfaili
et al. [11] also used DHCIAC over a set of test functions.

Ramos et al. [15] proposed the self-regulated swarm (SRS) algo-
rithm, within which, ACO is hybridized with a simple evolutionary
mechanism. This mechanism is inspired from the microbial life
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through a direct reproduction procedure linked to the local envi-
ronment features. It utilizes the advantageous characteristics of
ACO via a collective pheromone laying process in the landscape. In
addition, reproduction of new particles by two parents and death of
old particles makes SRS able to self-regulate the exploratory swarm
population and speed up the convergence to the global optimum.

PSO has also been empowered for DOPs via several improve-
ments. In this regard, Carlisle and Dozier [16–18] proposed three
strategies. They used sentry particles to detect the environmen-
tal changes. They also proposed that the social-only-model PSO
is faster in tracking changing objectives than the full model. In
social-only-model, only the social experience of the swarm is used
to update the velocity, while in the full model both the social
and personal experiences are utilized. The disadvantage of this
model is that its reliability deteriorates faster than the full model,
for large updating frequencies. When a dynamic change happens,
the optimization problem varies in optimum location and/or opti-
mum value. Therefore, they suggested resetting the personal best
position of all particles to the current position, when a change is
detected. As a result, all particles forget any experience that they
have gained about the search space. Eventually they proposed to
evaluate the personal best position after the environment change
and to have it been reset if it is worse than the current posi-
tion.

Eberhart and Shi [1] used the basic PSO but with a dynamic ran-
domly selected inertia weight. This approach however, is shown not
to be as efficient for high severity environments. Thus for increas-
ing diversity, they suggested to reinitialize the swarm through
resetting all particle positions to new random positions and recal-
culating the personal best and the neighborhood best positions.
Hu and Eberhart [19] also suggested resetting the personal best
positions combined with the partial reinitializing of the swarm.
Reinitializing of the swarm increases diversity while resetting the
personal best positions prevents return to the out-of-date posi-
tions.

A number of variable size versions of PSO have been developed
for DOPs. Clerc [20] introduced the Cheap-PSO algorithm, which is
based on environment changes; if there is no sufficient improve-
ment in a particle’s neighborhood, the particle reproduces a new
particle within its neighborhood. On the other hand, if sufficient
improvement is observed, the worst particle of that neighborhood
is killed. According to this strategy the decrease of swarm size
increases the probability of reproducing new particles. Coelho et al.
[21] also utilized the Cheap-PSO in order to improve the efficiency
of their algorithm. Koay and Srinivasan [22] developed a similar
approach to dynamically change the swarm size by an analogy with
the natural adaptation of amoeba to the environment. According to
this strategy, when a particle finds itself in a potential optimum, the
number of particles increases in that area.

Some researchers have divided the swarm into subpopulations
instead of a single population. Parrott and Li [23] constructed
multiple parallel subpopulations by a form of speciation and
encouraged to simultaneously track multiple peaks by preventing
overcrowding at peaks. Wang et al. [24] divided the whole popula-
tion into three parts: explore-population, memory-population and
exploit-population. Explore and exploit subpopulations perform
the exploration and exploitation, respectively and good parti-
cles are stored in memory-population. Du and Li [25] proposed
a new multi-strategy ensemble PSO (MEPSO) for dynamic opti-
mization. In MEPSO, the particles are divided into two  groups.
Gaussian local search and differential mutation strategies are uti-
lized over these two parts, respectively. Yan et al. have proposed
a multi-population and diffusion univariate marginal distribution
algorithm (MDUMDA) which in the multi-population approach is
used to locate multiple local optima and the diffusion model is used
to increase the diversity [26].

In  the current study, a new hybrid PSO-based algorithm called
dynamic hybrid PSO (DHPSO) is developed for continuous dynamic
optimization problems. Inspiring from the microbial life, a new
variable population size variant of PSO is introduced. It allows
the new particles to be reproduced and the old ones to die. In
this approach, three neighboring particles can probably reproduce
new infants especially in high potential regions of the continuous
search space, that are located near the local optimum points uti-
lizing the quadratic interpolation method. An initial age, equal to
zero, is assigned to all particles in the initialization. New born par-
ticles also posses this value of age. The age of the particles increase
at a constant rate and a particle dies when its age reaches to a
predetermined value. The adaptive population size and the use of
quadratic interpolation to distribute the new born particles results
in a rapid convergence of the algorithm towards the global optima.
In DHPSO the population is divided into two subpopulations to
perform exploitation and exploration, respectively. The first sub-
population includes a predetermined number of the best particles.
The position updating of the second subpopulation is done using a
differential mutation strategy, proposed in [25]. There is a good bal-
ance between the exploration and exploitation features of DHPSO
and the experimental analyses show that DHPSO is efficient for var-
ious types of dynamic optimization problems with different types
of dynamic environments such as linear, periodic and random.

The arrangement of this paper is as follows. In Section 2, the
basic PSO algorithm is described. Section 3 is devoted to explana-
tion of the new proposed approach. In Section 4, DHPSO results are
compared with those of existing dynamic optimization algorithms.
Conclusions are drawn in Section 5.

2. Basic PSO

PSO algorithm is inspired from the collective behavior of social
animals like flock of birds, school of fishes and herd of sheep that
have not a hierarchy system [4].  PSO was introduced by Kennedy
and Eberhart [27] in 1995 as a stochastic population based search
technique for solving optimization problems. In basic PSO the posi-
tion of particles is updated according to their social and cognitive
knowledge.

Let xi(t) and vi(t) denote the position and the velocity vector
of particle i in the search space at time/iteration t, the position is
updated in the current movement by:

xi(t + 1) = xi(t) + vi(t) (1)

The velocity vector that reflects both the experimental knowledge
of a particle and the socially exchanged information from other
particles, is also updated as:

vi(t + 1) = ωvi(t) + c1 r1(yi(t) − xi(t)) + c2 r2(ŷi(t) − xi(t)) (2)

where c1 and c2 are the constant parameters, r1 and r2 are the ran-
dom numbers between [0,1], ω is the inertia weight that controls
the exploration/exploitation abilities of the swarm, yi(t) is the per-
sonal best position of particle i and ŷi(t) represents the best position
found by neighbors (other particles). Three terms of Eq. (2) are
referred to as the inertia component, the cognitive component and
the social component, respectively.

In PSO, each particle follows a leader; this feature is realized
through the social term of Eq. (2).  A leader can be global to all
particles (global-best PSO) or local to a particle’s neighborhood
(local-best PSO) [4].  Due to larger interconnectivity, the global-best
PSO converges faster than the local-best PSO. On the other hand the
local-best PSO has larger diversity and it is less susceptible to being
trapped in local minima.
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