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The Shortley–Weller method is a standard finite difference method for solving the Poisson 
equation with Dirichlet boundary condition. Unless the domain is rectangular, the method 
meets an inevitable problem that some of the neighboring nodes may be outside the 
domain. In this case, an usual treatment is to extrapolate the function values at outside 
nodes by quadratic polynomial. The extrapolation may become unstable in the sense that 
some of the extrapolation coefficients increase rapidly when the grid nodes are getting 
closer to the boundary. A practical remedy, which we call artificial perturbation, is to 
treat grid nodes very near the boundary as boundary points. The aim of this paper is 
to reveal the adverse effects of the artificial perturbation on solving the linear system and 
the convergence of the solution. We show that the matrix is nearly symmetric so that the 
ratio of its minimum and maximum eigenvalues is an important factor in solving the linear 
system. Our analysis shows that the artificial perturbation results in a small enhancement 
of the eigenvalue ratio from O (1/(h · hmin) to O (h−3) and triggers an oscillatory order of 
convergence. Instead, we suggest using Jacobi or ILU-type preconditioner on the matrix 
without applying the artificial perturbation. According to our analysis, the preconditioning 
not only reduces the eigenvalue ratio from O (1/(h · hmin) to O (h−2), but also keeps the 
sharp second order convergence.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we consider the standard finite difference method for solving the Poisson equation −�u = f in a domain 
� ⊂R

n with Dirichlet boundary condition u = g on ∂�. Let the uniform grid of step size h is denoted by (hZ)n . The discrete 
domain is then defined as the set of grid nodes inside the domain, i.e. �h := � ∩ (hZ)n .

The standard finite difference method is a dimension-by-dimension application of the central finite difference, and we 
present mainly the case of one dimension and report any nominal differences in the other dimensions, when required. 
Unless � is rectangular, the method meets an inevitable problem that some of the neighboring nodes may be outside �. As 
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Fig. 1. uh
i, j has four neighboring nodes. The one in the right is outside �, and the ghost value uG

i+1, j is quadratically extrapolated from inside values uh
i, j

and uh
i−1, j and the boundary value gI .

depicted in Fig. 1, a neighboring node of the grid node is outside �. The node outside �h is called ghost node [10], and the 
function value at the ghost node is extrapolated by the quadratic polynomial as follows.

uG
i+1, j := uh

i−1, j
1 − θ

1 + θ
− 2uh

i, j
1 − θ

θ
+ gI

2

(1 + θ) θ
.

Here θ · h is the distance between the grid node and the boundary to the right.
Applying the extrapolation to the second-order central difference scheme, we obtain a second-order discretization in the 

x-direction

− (Dxxu)i j = −ui−1, j − 2ui, j + uG
i+1, j

h2
= 2

θh · h
ui, j − 2

h · (θ + 1)h
ui−1, j − 2

θh · (θ + 1)h
gI . (1)

This discretization is called the Shortley and Weller method [19] and the corresponding discrete Laplacian operator is given 
in equation (3) in section 3. On applying an iterative method to solve the discrete Poisson equation which is related to an 
nonsymmetric matrix, it is noted in [17] that if the related matrix is nearly symmetric, the residual norm is bounded by 
the ratio of the maximum and minimum eigenvalues in absolute value. We show in this work that the matrix induced by 
the Shortley–Weller method is nearly symmetric in the sense that the dominant majority of the entries in A = (ai, j) are 
symmetric about their diagonals [23] and aij �= 0 iff a ji �= 0 ([18] and references therein). In this respect, we estimate the 
convergence performance by the eigenvalue ratio rather than the ratio of singular values.

From the discretization (1), we see that the extrapolation may produce large error if θ in the denominator gets very 
small. This results in a large condition number for the matrix associated with the Shortley–Weller method as an estimation 
|λmax/λmin| = O  (1/ (h · hmin)) shown in Theorem 3.1. Here hmin is the minimum distance from the nodes in � to the 
boundary ∂�. To mitigate the singularity of the extrapolation, there are two treatments in practice: artificial boundary 
perturbation and preconditioning.

The artificial boundary perturbation is to treat the grid nodes near the boundary within a certain threshold θ0 · h as 
boundary points and we take uh

i, j = gI [7,10,16]. The common choice of the threshold is θ0 = h. We call the practice as the 
artificial boundary perturbation throughout this paper.

This article is aimed at revealing the precise effects from the artificial perturbation. We review the known facts and 
estimate the ratio of eigenvalues for the unperturbed linear system in section 2. In section 4, we discuss the effects on the 
convergence of the numerical solution and the eigenvalue ratio of the linear system for the artificial perturbation. In practice, 
we take θ0 = h for the perturbation value and we reveal in Theorem 4.2 that the eigenvalue ratio to the corresponding 
treatment is shown to be O (h−3) so that the artificial perturbation is less effective than any preconditioning. Another 
treatment to mitigate the dependence on the minimum grid size and condition numbers as well is preconditioning the 
linear system. We estimate the effect of the Jacobi preconditioning in section 5 and we test the usual other preconditioners 
such as symmetric Gauss–Seidel (SGS), incomplete LU (ILU) and modified ILU (MILU) to see the effect of the preconditioning. 
We show that the Jacobi preconditioning is enough to completely resolve the issue of the singularity of the extrapolation 
when θ is small, by proving that the Jacobi preconditioner is totally free from the effect of the minimum distance hmin
and its condition number is no larger than O (h−2). Consequently, we suggest the preconditioning method rather that the 
artificial boundary perturbation in order to improve the performance of the iterative solver.

It is worth noting that it was observed for many second order, self-adjoint, elliptic equations that the spectral condition 
numbers of the discrete operator grow as O (h−2) as the mesh size h tends to zero (see [6] for details). Also, Dupont, Kendall 
and Rachford [9] observed that even though the convergence rates of the Jacobi, SGS, and ILU preconditioned matrices still 
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