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The MoF (Moment of Fluid) method is one of the most accurate approaches among various 
interface reconstruction algorithms. Alike other second order methods, the MoF method 
needs to solve an implicit optimization problem to obtain the optimal approximate inter-
face, so an iteration process is inevitable under most circumstances. In order to solve the 
optimization efficiently, the properties of the objective function are worthy of studying. 
In 2D problems, the first order derivative has been deduced and applied in the previous 
researches. In this paper, the high order derivatives of the objective function are deduced 
on the convex polygon. We show that the nth (n ≥ 2) order derivatives are discontinuous, 
and the number of the discontinuous points is two times the number of the polygon edge. 
A rotation algorithm is proposed to successively calculate these discontinuous points, thus 
the target interval where the optimal solution is located can be determined. Since the high 
order derivatives of the objective function are continuous in the target interval, the iter-
ation schemes based on high order derivatives can be used to improve the convergence 
rate. Moreover, when iterating in the target interval, the value of objective function and 
its derivatives can be directly updated without explicitly solving the volume conservation 
equation. The direct update makes a further improvement of the efficiency especially when 
the number of edges of the polygon is increasing. The Halley’s method, which is based on 
the first three order derivatives, is applied as the iteration scheme in this paper and the 
numerical results indicate that the CPU time is about half of the previous method on the 
quadrilateral cell and is about one sixth on the decagon cell.

© 2017 Published by Elsevier Inc.

1. Introduction

Simulation of fluid with multiple-materials is a great challenge in computational mechanics. Depending on the different 
description of grid motion, the computational grid can be classified into the Lagrange frame and Eulerian frame. In the 
Lagrangian frame, the computational grid is fixed with the material so the material interface will always be coincident 
with the cell boundaries which can be tracked innately. However, in the Lagrangian frame, the computation will fall into 
stagnation with the increasing grid distortion because the fluid material always experiences a large deformation with respect 
to time. On the contrary, in the Eulerian frame, the grid is fixed in space to overcome the distortion. Since the material will 
advect across the cell’s boundaries during the simulation, the interface information is lost when using the Eulerian frame. 
Therefore, in order to track the material interface, extra effort is required.

The level-set method and the VoF-PLIC (Volume of Fluid with Piecewise Linear Interface Reconstruction) method are 
the two major approaches for interface reconstruction. The level-set method [1–3] reconstructs the material interface by 
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an implicit distance function whose zero contour represents the location of the material interface. This method avoids the 
complex geometric analysis but the level-set function must be solved in high order accurate to avoid serious dissipation 
which leads to a high level of volume loss especially in the unstructured grid [2]. The VoF-PLIC method [4–9] explicitly 
reconstructs such an approximate linear interface in the mix cells that the total volume conservation of each material is 
preserved. Since the VoF-PLIC method is independent of grid type, it can be performed on both structured and unstructured 
grid.

In the VoF-PLIC method, an approximate interface n · x + d = 0 in the mixed cell is constructed in two steps. The 
first step determines the normal n of the linear interface, while the second step calculates the constant d which satisfies 
the local volume enforcement requirement, namely the volume fraction of the polygon below the approximate material 
interface must be exactly equal to the given volume fraction in the mixed cell. The second step in different kinds of VoF-
PLIC method is almost the same because the constant d can be uniquely calculated as long as n and volume fraction are 
given [10,11].

Therefore, the most important part of the VoF-PLIC method is the first step because the estimation of n influences the 
accuracy of interface reconstruction significantly. Youngs’ method [4,9,12] calculates the normal n by the volume fraction 
gradient which is constructed from the adjacent cells. Although the normal can be calculated directly without iteration in 
the Youngs’ method, it is only first order accurate and can not reconstruct the linear interface precisely. For the sake of 
the second order accurate, additional requirement is proposed besides the matching of volume fraction. LVIRA (Least square 
Volume Interface Reconstruction Algorithm) [7] estimates the normal by finding a linear interface, which will be extended 
outside the mix cell, gives a best approximation to the given volume fraction in adjacent cells. ELVIRA (Efficient least squares 
VoF interface reconstruction algorithm) [7] presents an alternative minimization approach by determining the normal from 
six candidates which is also second order accurate and does not require iterative process. Swartz method [13,14] calculates 
the normal by finding a common linear interface for a pair of neighbor mixed cells which rigorously satisfies the given 
volume fraction. These methods are second order accurate but an implicit optimization is usually required except for the 
ELVIRA method which can only be performed on structured grid. All of these methods need the volume fraction from the 
adjacent cells and extra treatments have to be implemented on the boundary, thus increasing difficulty in programming and 
parallelization.

The MoF (Moment of Fluid) method [15–17] is a new approach to calculate the interface normal which not only uses 
the volume fraction but also takes use of the material centroid in the mixed cell. It calculates the normal n by finding a 
linear interface which fulfills the local volume enforcement requirement and minimizes the discrepancy between the given 
reference material centroid and the approximate material centroid. The MoF method is also second order accurate and 
previous researches find that it is more accurate than the VoF-PLIC methods in fluid simulation [18]. Despite its higher 
accuracy, another attractive superiority of the MoF method is that its implementation could work as a cell-by-cell black-box 
routine without the requirement from neighbor cells. Alike other second order method, an implicit nonlinear optimization 
problem is also needed to be solved and an iteration process is inevitable under most circumstances. In order to improve 
the convergence rate, the derivative-based iteration scheme is preferred. Although the objective function is nonlinear and 
implicit, the analytical first order derivative has been deduced in the previous researches [11,19] so that the value of the 
objective function and its first order derivative can be calculated simultaneously. Therefore, iteration schemes based on first 
order derivative, such as the cubic interpolation method [11,20], are commonly used in the MoF method.

The efficiency of the MoF method is important. The majority of the CPU time is consumed in this process especially in 
the Eulerian codes [21] or the MMALE codes with sub-scale closure model [22] since the interface must be reconstructed in 
every time step under these situations. Therefore, in order to further improve the efficiency, the properties of the objective 
function are worthy of studying. In this paper, the high order derivatives of the objective function are deduced on the convex 
polygon. We find that the nth (n ≥ 2) order derivatives are discontinuous, and the number of the discontinuous points is 
two times the number of the polygon edge. A rotation algorithm is proposed to successively calculate these discontinuous 
points, thus the interval where the optimal solution is located can be determined. In the target interval, the high order 
derivatives of the objective function are always continuous so the iteration schemes based on high order derivatives can 
be used to improve the convergence rate. Moreover, when iterating in the target interval, the value of objective function 
and its derivatives can be directly updated without explicitly solving the volume conservation equation. The direct update 
makes a further improvement of the efficiency especially when the number of edges of the polygon is increasing. The 
Halley’s method, which is based on the first three order derivatives, is applied as the iteration scheme in this paper and the 
numerical results indicate that the CPU time is about half of the previous method on the quadrilateral cell and is about one 
sixth on the decagon cell.

The rest of this paper is organized as follows. In Section 2, we will briefly review the concept of local volume enforcement 
requirement. In Section 3, the basic idea of the MoF method is introduced. Afterwards, the high order derivatives of the 
objective function are deduced in Section 4 and the discontinuity of the high order derivatives is analyzed in Section 5. 
Then in Section 6, we will develop a direct update of the value and the derivatives of the objective function without 
explicitly solving the volume conservation equation. Before the numerical tests, full steps of our algorithm are summarized 
in Section 7. Finally, a series of numerical tests will be conducted in Section 8 and the conclusion is drawn in Section 9.
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