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A Monte Carlo method for angle scattering of electrons in air that accommodates the 
small-angle multiple scattering and larger-angle single scattering limits is introduced. The 
algorithm is designed for use in a particle-in-cell simulation of electron transport and 
electromagnetic wave effects in air. The method is illustrated in example calculations.
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1. Introduction

The scattering of electrons in foils or air has received considerable attention over many years in publications addressing 
theory, experiment, and simulation. Here we report the introduction of a new algorithm for constructing and Monte Carlo 
sampling a probability distribution function (PDF) for the scattering angle of an electron colliding with atoms. The PDF is a 
composite distribution capturing the Gaussian distribution of multiple small-angle scatters and the non-Gaussian, Rutherford 
tail at larger angles. We propose an algorithm extending existing theory and illustrate its use in example calculations. 
The algorithm is implemented in a Monte Carlo particle-in-cell code. In a companion paper [1], Higginson introduces the 
approach to building a composite PDF by solving the set of constraint equations used here. However, Higginson’s solution 
method and implementation in a code are quite different: the solution for the composite PDF is done in the loop over 
particles when the scattering is performed. Moreover, Higginson extends the PDF to large scattering angles, verifies his 
methodology with comparisons against direct Monte Carlo scattering computations using the Rutherford cross-section, and 
applies his new hybrid method to entirely different physics applications.

The introduction of a new algorithm and the demonstration of its use herein are motivated by the goal of including 
both large-angle and multiple small-angle elastic collisions in a Monte Carlo treatment of elastic and inelastic scattering of 
electrons within an electromagnetic particle-in-cell (PIC) simulation code designed for use in various physical applications. 
The development of the model for the algorithm demonstrates the simplicity of the approach, and the example calculations 
give some insight into the relative accuracy of the model when compared to experimental data and other theories on angle 
scattering of electrons and the limits on precision due to statistical resolution in the Monte Carlo simulations.
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2. Formulation

The theory of electron scattering is well established [2–8]. Here we follow the treatment by Jackson in Secs. 13.6 and 
13.7 of his classic textbook [6]. We are not aware that Jackson’s treatment of large and small angle scattering has been used 
previously as the basis for a Monte Carlo treatment of electron scattering by neutral matter. For electron energies in excess 
of 1 keV of interest in our applications, the mean-square-deflection angle (polar angle relative to the incident velocity of 
the electron) for a single scatter is given by
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where θmax = 1 and θmin = (Z 1/3/192)(mec/p) in this limit, p is the electron momentum, and Z is the atomic number of the 
medium in which the electrons are scattered. The numerical factor 192 in Eq. (1) arises from the ratio of the atomic radius 
a ≈ 1.4a0 Z−1/3 to the electron Compton wavelength, where a0 is the hydrogenic Bohr radius, and the use of the definition 
of the fine-structure constant. In this treatment of the electron experiencing the rare larger angle event, the scattering angle 
is large compared to the root-mean-square angle but is still small, < 1, in an absolute sense. The approximation that one 
can set θmax = 1 introduces some imprecision through the term ln(θmax/θmin), which is common in Coulomb collision theory.

Jackson shows that the mean-square angular deflection 〈�2〉 after an electron beam traverses a thickness d = v�t is 
given by

〈�2〉 ≈ 2πna v�t

(
2Ze2

pv

)2

ln

(
1

θmin

)
→ 2

Zω2
pere

c

m2
e c2

p2

c

v
Ls�t (2)

Ls = ln

(
1

θmin

)
= ln

(
192

Z 1/3

p

mec

)
(3)

where v is the electron speed, �t is the time step, na is the atomic number density of the scattering medium, ωpe is 
the electron plasma frequency with ω2

pe = 4πna Ze2/me , and re = e2/mec2 is the classical electron radius. The number of 
collisions experienced by an electron in the thickness d is given in Jackson’s Eq. (13.109):

Ncoll = naσd ≈ πna v�t
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The thickness d must be sufficiently large so that Ncoll >> 1 but not so large that inelastic collisions change the electron 
energy appreciably nor allow the electron to transport in space far enough for the scattering medium to have changed 
significantly. The latter constraint serves to justify adopting an operator-splitting approach in incorporating Monte Carlo 
angle scattering as well as an inelastic collision model within an electromagnetic PIC simulation.

Jackson finds it convenient to transform coordinates from spherical polar coordinates aligned with the incident electron 
momentum vector to coordinates where θ is projected onto a fixed plane in the laboratory frame (θ, φ) → (θ ′, φ′) (Fig. 13.7 
of Ref. [6]) such that 〈θ ′ 2〉 ≈ 〈 1

2 θ2〉. The small-angle electron Rutherford differential cross-section per atom becomes
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Jackson then integrates the differential cross-section (dσ/d	)sinθ ′dθ ′dφ′ ≈ (dσ/d	)θ ′dθ ′dφ′ with respect to φ′ to obtain 
the reduced differential cross-section

dσ

dθ ′ (θ
′) =

∮
dσ

d	
(θ ′, φ′)dθ ′dφ′ ≈ π

2
(

2Ze2

pv
)2 1

θ ′ 3
(6)

and the single-scattering distribution for the projected angle is then
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which is Jackson’s Eq. (13.114) if we recall d = v�t . At this point Jackson scales the scattering angle θ ′ in terms of the 
root-mean-square scattering angle 〈�2〉1/2, i.e., α ≡ θ ′/〈�2〉1/2 = θ/〈2�2〉1/2. The single-scattering distribution is valid for 
angles that are large compared to 〈�2〉1/2. The distribution for multiple small-angle scattering tends to a Gaussian as 
dictated by the central limit theorem. Restricting the polar scattering angle to be positive leads to the following expressions 
for the multiple and single-scattering distributions and the composite distribution P :
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