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We compare three thermodynamically consistent numerical fluxes known in the literature, 
appearing in a Voronoï finite volume discretization of the van Roosbroeck system with 
general charge carrier statistics. Our discussion includes an extension of the Scharfetter–
Gummel scheme to non-Boltzmann (e.g. Fermi–Dirac) statistics. It is based on the analytical 
solution of a two-point boundary value problem obtained by projecting the continuous 
differential equation onto the interval between neighboring collocation points. Hence, it 
serves as a reference flux. The exact solution of the boundary value problem can be 
approximated by computationally cheaper fluxes which modify certain physical quantities. 
One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann 
nature of the problem), another one modifies the effective density of states. To study 
the differences between these three schemes, we analyze the Taylor expansions, derive 
an error estimate, visualize the flux error and show how the schemes perform for a 
carefully designed p-i-n benchmark simulation. We present strong evidence that the flux 
discretization based on averaging the nonlinear diffusion has an edge over the scheme 
based on modifying the effective density of states.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The van Roosbroeck system [1] (also known as the semiconductor device equations) has become a standard model to 
describe the flow of electrons and holes in semiconductor devices. Its numerical approximation is very well understood if 
Boltzmann statistics accurately describes the electron and hole densities. In this case, one refers to the semiconductor as 
non-degenerate. Scharfetter and Gummel [2] presented in the late 1960ies a flux discretization scheme which could deal 
with the numerical challenges such as stability and preservation of maximum principles posed by these equations, see for 
example [3–5]. The generalization to non-Boltzmann statistics (in degenerate semiconductor materials), however, presents 
very similar challenges which are not satisfactorily solved yet. Hence, the goal of this paper is to study the influence of three 
thermodynamically consistent flux approximations used in a Voronoï finite volume discretization of the van Roosbroeck 
system when assuming more general statistics functions. We will compare these schemes analytically and numerically to 
assess their quality for semiconductor device simulations.
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A very general and computationally rather expensive finite volume flux approximation was studied in [6]. In order to 
determine the numerical flux between two control volumes this method needs to solve an integral equation. This integral 
equation is a reformulation of a nonlinear two-point boundary value problem which one obtains from projecting the con-
tinuity equation for the charge carriers onto the interval between two nodes belonging to neighboring cells. For so-called 
Blakemore statistics [7] the integral equation is known to simplify to a nonlinear algebraic equation which can be solved 
with a few Newton steps [8]. No corresponding simplification is known for more general statistics. For this reason several 
ideas were proposed. In [9], piecewise approximations (e.g. Padé interpolants) for the statistics function are discussed. How-
ever, this approach may still be rather costly. Hence, modified Scharfetter–Gummel schemes which only approximately solve 
the two-point boundary value problem may yield a good compromise between efficiency and accuracy by averaging certain 
quantities.

Several such schemes have been suggested to deal with more general statistics [10–12]. Unfortunately, these discretiza-
tions are not consistent with the thermodynamic equilibrium, i.e. they do not satisfy an analogous discrete version of 
the continuous property that the fluxes vanish if the quasi Fermi potentials are constant. Thermodynamic consistency is 
extremely important to avoid unphysical steady state dissipation. Furthermore, the consistent discretization of dissipative 
effects is crucial when coupling the semiconductor device equations to heat transport models.

Bessemoulin-Chatard suggested a scheme which averages the diffusion enhancement in such a way that the resulting flux 
approximation is thermodynamically consistent [13]. The diffusion enhancement can be interpreted as a measure for how 
far the system is from the Boltzmann regime. It leads to a nonlinear diffusion coefficient whose particular form is induced by 
the statistical distribution function for the charge carrier densities, e.g., the Fermi–Dirac integral of order one half. Using this 
flux, Bessemoulin-Chatard proved convergence of a semi-implicit finite volume scheme. This diffusion enhanced scheme was 
translated into the context of semiconductor device models in [14], making the dependency on the diffusion enhancement 
explicit.

It is also possible to derive another class of schemes by modifying the effective density of states. This so-called inverse 
activity scheme was introduced in [15] for the numerical solution of the generalized Nernst–Planck system which is similar 
to the van Roosbroeck system. A variant of this scheme for Fermi–Dirac statistics is described in [16,17]. Here the adaption 
to general statistics is realized via averaging the inverse activity coefficient. Even though any such average will yield a 
thermodynamically consistent scheme, we will focus on two practical choices: an arithmetic and geometric mean of the 
inverse activity coefficients at neighboring nodes. However, some of our results apply to any average for the inverse activity 
coefficient that satisfies very mild additional assumptions.

We continue this paper by introducing the van Roosbroeck system in Section 2 and present its discretization as well as 
the different flux approximations in Section 3. In order to compare these schemes, we study their Taylor series expansions 
in Section 4, derive a general error estimate in Section 5, compare the flux error visually in Section 6 and finally analyze the 
influence of the different numerical fluxes to the coupled van Roosbroeck system by simulating a carefully chosen device 
setup consisting of a p-doped, intrinsic and n-doped region (p-i-n device) in Section 7.

This publication is supplemented with a Mathematica notebook, Matlab files and simulation data, which can be used to 
verify the presented results [18].

2. The van Roosbroeck system

The van Roosbroeck system describes the charge carrier flow and the electrostatic potential in a semiconductor device. 
It consists of three coupled nonlinear partial differential equations: one for the electrostatic potential ψ and two continuity 
equations, one for the electron and one for the hole density which we denote with n and p. We consider a homogeneous 
material and some domain � ⊆ R

d for d ∈ {1, 2, 3}.
Then the stationary van Roosbroeck system is given by

−∇ · (ε0εr∇ψ) = q (p − n + C) , (1a)

∇ · jn = qR, (1b)

∇ · jp = −qR. (1c)

The constants q, ε0 and εr denote the elementary charge, the vacuum dielectric permittivity and the relative permittivity 
of the semiconductor, respectively. The recombination rate R depends on the electron and hole densities and the doping 
profile C may vary spatially.

The electron density and the hole density are related to the electrostatic potential ψ as well as the quasi Fermi potentials 
of electrons and holes ϕn and ϕp via a statistical distribution function F , namely by

n = NcF
(

q(ψ − ϕn) − Ec

kB T

)
and p = NvF

(
q(ϕp − ψ) + E v

kB T

)
. (2)

The effective densities of states for electrons in the conduction band Nc and holes in the valence band Nv as well as the 
corresponding band-edge energies Ec and E v are material parameters and assumed to be constant in this paper. However, 
in applications they can vary with the material (for example due to abrupt or graded heterojunctions). The temperature 
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