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In this paper, we propose two ways to construct fractional differential equations (FDE) 
for approximating atomic chain dynamics. Taking harmonic chain as an example, we add 
a power function of fractional order to Taylor expansion of the dispersion relation, and 
determine the parameters by matching two selected wave numbers. This approximate 
function leads to an FDE after considering both directions for wave propagation. As an 
alternative, we consider the symbol of the force term, and approximate it by a similar 
function. It also induces an FDE. Both approaches produce excellent agreement with the 
harmonic chain dynamics. The accuracy may be improved by optimizing the selected wave 
numbers, or starting with higher order Taylor expansions. When resolved in the lattice 
constant, the resulting FDE’s faithfully reproduce the lattice dynamics. When resolved in a 
coarse grid instead, they systematically generate homogenized algorithms. Numerical tests 
are performed to verify the proposed approaches. Moreover, FDE’s are also constructed 
for diatomic chain and anharmonic lattice, to illustrate the generality of the proposed 
approaches.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Atomic motion is represented by displacement away from equilibrium. In a crystal solid, equilibria positions of all atoms 
form a periodic structure in space, called atomic lattice. The smallest repeating structure is a unit cell. Besides external 
forces, atomic motion is driven by interatomic potentials, including pairwise ones, three-body ones, etc. These potentials 
induce interatomic forces acting upon the atoms. Atomic/molecular dynamics simulations calculate resulting Newton equa-
tions. If one resolves the dynamics accurately, then complete description for the physical system is obtained. In this way, 
atomic simulation suits well to explore physical properties and mechanical behaviours, particularly for systems at micro-
scopic scale, ranging from thermal conduction in nonlinear chains to failure in golden nanowires [1,2].

Atomic/molecular dynamics simulations nowadays offer a standard toolkit for exploring physical/mechanical processes 
in nano- or micro-scales. In a larger scale, however, full atomic dynamics require immense computing power, which is 
too expensive or even formidable. Multiscale simulations may remedy this difficulty and effectively capture features at 
both fine and coarse scales, if the atomic dynamics causes either a homogenized effect, or a localized effect in one or 
several fine scale subdomains. In the former case, homogenization is usually performed rigorously or heuristically by certain 
asymptotic expansions, and leads to coarse scale differential equations at the continuum level. See [3–6]. In the latter case, 
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Fig. 1. Schematic plot of harmonic chain.

homogenization is also necessary for efficiently simulating the vast coarse scale domain complimentary to the selected fine 
scale subdomains.

On the other hand, the development of fractional derivative dated back to the early years when Newton and Leibnitz 
invented differential and integral calculus. Unlike standard calculus, there are various definitions for fractional derivative, 
including those named after Caputo, Riemann–Liouville, Grunwald–Letnikov, etc. [7]. The most distinct feature of fractional 
derivative is its integral-differential form with convolution. While causing difficulty in numerical resolution, this globality 
also facilitates modeling of applications with long time/space correlations. For instance, anomalous diffusion characterized 
by certain Brownian motion may be described by such an equation [8]. More applications can be found in rheology, brain 
aneurysm, visco-elasticity, fluid-structure interaction, just to name a few [9–11].

In a previous study for concurrent multiscale algorithm, we proposed to coarsen the atomic dynamics by matching 
Taylor expansions (matching differential operator approach) [12]. In case of a linear chain, this is actually equivalent to 
matching the dispersion relation by polynomials. We extend this idea, and propose here to match the dispersion relation 
with the help of functions of fractional power. This naturally induces a fractional differential equation (FDE). When the 
FDE is resolved precisely with the lattice constant as the space grid size, the linear chain dynamics is reproduced almost 
exactly, which is guaranteed by the Parseval’s relation. When resolved over a coarse grid, the FDE resolution is determined 
by the Nyquist law. This in turn provides an accurate approximation for the atomic dynamics under this resolution. Along 
this line, we further propose to match the symbols of the force term in the Newton equation. Again the dispersion relation 
is approximated at high accuracy. The numerical discretization of FDE in space is performed with an algorithm of spectral 
accuracy [13].

The proposed approaches apply to more general lattices. We illustrate in the appendices for a diatomic chain and an 
anharmonic chain as examples. For the diatomic chain, we obtain two set of approximate FDE’s. By matching the dispersion 
relations, we obtain averaged equations for the mean motion and relative (inner-molecular) motion, in a decoupled manner. 
By matching the symbols, we obtain coupled coarse scale equations for the heavy atoms and light atoms, respectively. For 
the anharmonic chain, only by matching symbols can we obtain a homogenized FDE.

The rest of this paper is organized as follows. In Section 2, we first describe the linear harmonic chain model, and intro-
duce the fractional derivatives. Then we design FDE’s to approximate the dispersion relation, and the symbol respectively, 
of the atomic model. In Section 3, we describe how to obtain coarse grid dynamics by semi-discretisation of the resulting 
FDE via centered differences. In Section 4, we first illustrate the accurate approximation by comparisons of the dispersion 
relations for the original Newton equation and the constructed FDE’s. Then we perform time integration and demonstrate 
the effectiveness by numerical examples. Some concluding remarks are made in Section 5. In the appendices we further 
extend the approaches to homogenize diatomic chain and anharmonic chain.

2. Harmonic chain and approximate FDE’s

We consider a monatomic chain shown in Fig. 1. The lattice constant is ha , and the atom mass is m. The displacement 
of n-th atom away from its equilibrium is denoted as un(t). For simplicity, nearest neighboring interaction is assumed. The 
interatomic potential between atoms numbered (n − 1) and n is V (ha + un − un−1). The governing Newton equation then 
reads

mün = −∂un [V (ha + un(t) − un−1(t)) + V (ha + un+1 − un)] . (1)

We make a harmonic approximation of the potential, namely, V (r) = 1
2 Er2, and rescale space by ha , time by 

√
m/E . This 

gives the harmonic chain with

ün = un−1 − 2un + un+1. (2)

In the following, we construct FDE’s corresponding to the Newton equation (2).
Two methods are proposed. First, we notice that the dynamics for a linear lattice is characterized by its dispersion re-

lation, expressed in terms of trigonometric function. A function of fractional power is added upon the low order Taylor 
expansion, with the parameters determined by matching two selected wave numbers. An FDE is then obtained by consider-
ing the derivatives corresponding to the square of the approximate dispersion relation. Alternatively, we may also consider 
the symbol of the force term in the Newton equation, which is also expressed in terms of trigonometric function. Making 
an approximation in the same fashion, we may construct another FDE. This symbol matching also leads to an approximation 
of the dispersion relation, yet in a different form.

When a space discretization is performed with grid size the same as the lattice constant (ha = 1 in this rescaled Newton 
equation), the matching of the dispersion or the symbol naturally induces an accurate approximation of the lattice dynamics. 
In the mean time, if resolved in a larger grid size, the semi-discretized FDE systematically provides coarsening for the lattice 
dynamics.
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