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We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral ele-
ment approximation for the non-linear two dimensional shallow water equations with 
non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadri-
lateral meshes. The scheme is derived from an equivalent flux differencing formulation of 
the split form of the equations. We prove that this discretization exactly preserves the lo-
cal mass and momentum. Furthermore, combined with a special numerical interface flux 
function, the method exactly preserves the mathematical entropy, which is the total energy 
for the shallow water equations. By adding a specific form of interface dissipation to the 
baseline entropy conserving scheme we create a provably entropy stable scheme. That is, 
the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with 
a particular discretization of the bathymetry source term we prove that the numerical ap-
proximation is well-balanced. We provide numerical examples that verify the theoretical 
findings and furthermore provide an application of the scheme for a partial break of a 
curved dam test problem.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Fluid flows in lakes, rivers, and near coastlines are of interest in oceanography and climate modeling. For such flows the 
vertical scales of motion are much smaller than the horizontal scales. From this and the assumption of hydrostatic balance 
[1], the Euler equations can be simplified to the shallow water equations. If the fluid flows over a non-constant bottom 
topography the shallow water equations may be written as a hyperbolic system of balance laws

�wt + �fx + �g y = �s. (1.1)

It is well-known that solutions of the balance laws (1.1) may develop discontinuities in finite time, independent of the 
smoothness of the initial data. Hence, we consider solutions of the balance laws (1.1) in a weak sense that are well-defined 
provided the source term �s remains uniformly bounded, i.e., weak solutions of (1.1) are well-defined under the assumption 
that the function used to model the bottom topography is in the space W 1,∞(R), see e.g. [2].
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The design of numerical methods to approximate (1.1) is driven by the need for stable, accurate and robust behaviors. For 
instance, the preservation of steady state solutions is critical in problems with non-constant bottom topographies. Preserving 
steady solutions discretely is particularly troublesome for discontinuous bottom topographies where special discretization
of the source term are required, e.g. [3,4]. One steady state constraint for the shallow water equations is the “lake at 
rest” condition [4–6], since the relevant waves in a flow can be viewed as small perturbations of the lake at rest, see [5]. 
A good numerical method for the shallow water equations should accurately capture both steady states and their small 
perturbations (quasi-steady flows) so as to diminish the appearance of unphysical waves with magnitude proportional to 
the mesh size (a so-called “numerical storm” [7]), that are normally present for numerical schemes that cannot preserve 
the “lake at rest” condition. A numerical method that exactly preserves the “lake at rest” steady state property is said to be 
well-balanced, see e.g. [3,5,6,8].

Another critical requirement of the numerics is the ability of the method to remain stable and accurate. Particularly the 
removal of aliasing errors that can drive non-linear instabilities, and maintenance of stability if discontinuities develop are 
key characteristics of a numerical scheme. Recent work has appeared on the use of high-order discontinuous Galerkin (DG) 
approximations to create numerical methods for the solution of systems of conservation laws that discretely satisfy the 
second law of thermodynamics, e.g., [8–10]. These high-order DG methods may be derived from the perspective of mathe-
matical entropy conservation, e.g. [9,11,12], or reformulations of the PDE into a split formulation to maintain conservation, 
e.g. [8,10]. We note that the motivation behind these two approaches are similar [13].

The split form of an equation is found by averaging its conservative and non-conservative advective forms. This is prob-
lematic as it is not obvious that discretization of the split form remain conservative. However, conservation is critical for 
the numerical solution to model the correct shock speeds. Recent success has been had using diagonal norm summation-
by-parts (SBP) operators to discretize the spatial derivatives in the split formulation of the equations [8,14–17]. Fisher et 
al. [14] show that split form operators derived from SBP derivative matrices are consistent and conservative in the Lax–
Wendroff sense. There is now a known link between SBP finite difference operators and the discontinuous Galerkin spectral 
element approximation with Legendre–Gauss–Lobatto points, e.g. [15]. This link was used in [8] to derive an entropy con-
serving discontinuous Galerkin spectral element method (DGSEM) for the one dimensional shallow water equations. This 
paper exploits the links further and extends in a non-trivial way the previous work found in [8] to multiple dimensions and 
possibly discontinuous bottom topographies.

In this paper we present an entropy stable, high-order discontinuous Galerkin spectral element approximation for the 
shallow water equations with a discontinuous bottom topography for unstructured and curved quadrilateral grids. The 
DGSEM is naturally discontinuous at element boundaries, so we ensure high-order (spectral) accuracy by placing element 
boundaries at discontinuities in the bottom topography. The ability to do so allows one to model realistic bottom topogra-
phies appearing in oceanography. The scheme presented herein is also well-balanced, an attribute difficult to guarantee in 
curvilinear coordinates. We find that the numerical satisfaction of the metric identities [18] (referred to in [19] as the ge-
ometric conservation law) is critical to prove that the baseline scheme remains entropy conservative and well-balanced on 
arbitrary meshes.

Our approach is to use results of Fisher [19] and Fisher and Carpenter [20] to derive an entropy conserving approxi-
mation, and from that an entropy stable one, which is possible because it is possible to reformulate the spectral element 
approximation of the split form of the shallow water equations into an equivalent flux differencing structure. We use the 
flux differencing reformulation to prove the underlying properties of the entropy stable DGSEM, as well as to highlight how 
an existing DGSEM code can be altered to incorporate entropy stability.

The paper is organized as follows: in Sec. 2 we begin with a brief description of the continuous entropy analysis of 
the two dimensional shallow water equations. We outline the discontinuous Galerkin spectral element method with the 
summation-by-parts (SBP) property in Sec. 3. This section also introduces the important reformulation of the DGSEM into 
an equivalent flux differencing framework. We provide in Sec. 4.1 a discretization of the two dimensional shallow water 
equations using the flux differencing formulation that is conservative and entropy conservative on curvilinear meshes. We 
also provide a detailed proof that the approximation remains well-balanced. Then, in Sec. 4.2, additional dissipation is 
added to the scheme to ensure that the approximation remains valid for flow regimes that may contain discontinuities. 
Numerical results in Sec. 5 demonstrate and underline our theoretical findings. Our conclusions are presented in Sec. 6. 
Finally, Appendix D provides algorithms and implementation details of how a standard DGSEM code can be altered to 
incorporate the newly proposed entropy stable fluxes.

2. Shallow water equations

We begin with the balance law form of the two dimensional shallow water equations

ht + (hu)x + (hv)y = 0,

(hu)t + (h u2 + g h2/2)x + (huv)y = −g h bx,

(hv)t + (huv)x + (h v2 + g h2/2)y = −g h by,

(2.1)

which includes the continuity and momentum equations. The quantity h = h(x, y, t) denotes the water height measured 
from the bottom topography b = b(x, y) with the total height given by H = h + b. Additionally the constant g is the gravi-
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