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In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping 
schemes for effectively solving high-dimensional nonlinear Klein–Gordon equations with 
different boundary conditions. We begin with one-dimensional periodic boundary problems 
and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-
dimensional function space based on the operator spectrum theory. We then introduce 
an operator-variation-of-constants formula which is essential for the derivation of our 
arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear 
abstract ODE. The nonlinear stability and convergence are rigorously analysed once the 
spatial differential operator is approximated by an appropriate positive semi-definite 
matrix under some suitable smoothness assumptions. With regard to the two dimensional 
Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with 
discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional 
nonlinear Klein–Gordon equations effectively. All essential features of the methodology 
are present in one-dimensional and two-dimensional cases, although the schemes to 
be analysed lend themselves with equal to higher-dimensional case. The numerical 
simulation is implemented and the numerical results clearly demonstrate the advantage 
and effectiveness of our new schemes in comparison with the existing numerical methods 
for solving nonlinear Klein–Gordon equations in the literature.
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1. Introduction

In this paper, we begin with the following nonlinear Klein–Gordon equation in a single space variable:{
utt − a2�u = f (u), t0 < t ≤ T , x ∈ �,

u(x, t0) = ϕ1(x), ut(x, t0) = ϕ2(x), x ∈ �̄,
(1.1)

and suppose that the initial value problem (1.1) is supplemented with the periodic boundary condition on the domain 
� = (−π, π)

u(x, t) = u(x + 2π, t), (1.2)

where u(x, t) represents the wave displacement at position x and time t , and f (u) is a nonlinear function of u chosen as 
the negative derivative of a potential energy V (u) ≥ 0. In general, there are various choices of the potential function f (u)

to investigate solitons and nonlinear phenomena. For instance, the following sine-Gordon equation

utt − a2�u + sin(u) = 0, (1.3)

is well known, and other nonlinear potential functions also appear in the literature such as f (u) = sinh u and polyno-
mial f (u). Moreover, if u(·, t) ∈ H1(�) and ut(·, t) ∈ L2(�), the energy conservation becomes another key feature of the 
Klein–Gordon equation, that is

E(t) = 1

2

∫
�

(
u2

t + a2|∇u|2 + 2V (u)
)
dx ≡ E(t0). (1.4)

This is an essential property in the theory of solitons. Accordingly, it is also significant to test the effectiveness for a 
numerical method to preserve the corresponding discrete energy.

In a wide variety of application areas in science and engineering such as nonlinear optics, solid state physics and quan-
tum field theory [10,23,51], the nonlinear wave equation plays an important role and has been investigated by many 
researchers. In particular, the nonlinear Klein–Gordon equation (1.1) is used to model many different nonlinear phenomena, 
including the propagation of dislocations in crystals and the behaviour of elementary particles and of Josephson junctions 
(see Chap. 8.2 in [24] for details). Its description and understanding are of great importance from both the analytical and 
numerical aspects, and have been investigated by many researchers. Along the analytical front, the Cauchy problem was 
investigated (see, e.g. [8,13,26,36]). If the energy potential function satisfies V (u) ≥ 0 for u ∈ R, the global existence of 
solutions for the defocussing case was established in [13], and if the energy potential satisfies V (u) ≤ 0 for u ∈ R, the fo-
cusing case possible finite time blow-up was shown in [8]. With regard to the numerical aspect, there have been proposed 
and studied a variety of solution procedures for solving the nonlinear Klein–Gordon equation. For instance, the energy con-
servative, explicit, semi-implicit and symplectic conservative standard finite difference time domain (FDTD) discretisations 
were proposed and analysed in [2,7,25,38,42]. As far as the finite-difference method is concerned, on the basis of standard 
finite-difference approximations, a three-time level scheme was derived by Strauss and Vázquez in [45]. Jiménez [35] de-
rived conservative finite difference schemes with some analogous discretisations to that used in [45] for the nonlinear term. 
Other approaches, such as the finite element method and the spectral method, were also studied in [17,19,27,49]. With 
respect to finite-element techniques, Tourigny [49] proved that the use of product approximations in Galerkin methods 
subject to Dirichlet boundary conditions dose not affect the convergence rate of the method. Guo et al. [27] developed a 
conservative Legendre spectral method. Dehghan et al. used the radial basis functions, the dual reciprocity boundary integral 
equation technique, the collocation and finite difference-collocation methods for solving the nonlinear Klein–Gordon equa-
tions or coupled Klein–Gordon equations (see, e.g. [20–22,37]). Although many numerical methods have been derived and 
investigated for solving the nonlinear Klein–Gordon equation in the literature, in general, the existing numerical methods 
have limited accuracy, and little attention was paid to the special structure brought by spatial discretisations. This moti-
vates the main theme of this paper to develop arbitrarily high-order Lagrange collocation-type time-stepping schemes for 
efficiently solving nonlinear Klein–Gordon equations.

The paper is organised as follows. In Section 2, based on the operator spectrum theory, we first formulate the one-
dimensional nonlinear Klein–Gordon equation (1.1)–(1.2) as an abstract second order ordinary differential equation on an 
infinity-dimensional Hilbert space L2(�). Then, the operator-variation-of-constants formula for the abstract equation is 
introduced, which is in fact an integral equation of the solution for the nonlinear Klein–Gordon equation (1.1)–(1.2). In 
Section 3, using the derived operator-variation-of-constants formula, we calculate the nonlinear integrals appeared in this 
formula by an effective Lagrange interpolation, and then a class of arbitrarily high-order Lagrange collocation-type time-
stepping schemes is derived. Furthermore, the investigation of the local error bounds is made, which delivers the simplified 
order conditions in a much simpler form. Section 4 is devoted to the semidiscretisation. This process enables us to take a 
subtle but powerful advantage of dealing with the undiscretised differential operator A and incorporate the special struc-
ture introduced by spatial discretisations with the new integrators. The main theoretical results of this work are presented 
in Section 5. We use the strategy of the energy analysis to study the nonlinear stability and convergence for the fully dis-
crete scheme. Since these fully discrete schemes are implicit, the iterative solutions are required in practical computations. 
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