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desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied
to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N

Igi{;f:gd;ates is the number of orbitals, based on an interpolative separable density fitting technique
Particle-particle random phase and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA
approximation framework. The size of the pp-RPA matrix can also be reduced by keeping only a small
Density fitting portion of orbitals with orbital energy close to the Fermi energy. This reduced system
Jacobi-Davidson eigensolver leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy

for the low-lying excitation energies.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

While the time-dependent density functional theory (TDDFT) [1,12] has been widely used in the prediction of electronic
excited states in large systems because of its low computational cost and satisfying accuracy, it is known however that
TDDFT is not able to well describe double, Rydberg, charge transfer, and extended m-systems excitations [2], which limits
its applications in many practical problems. This motivates the development of the particle-particle random phase approxi-
mation (pp-RPA) [9,14,18] for excited state calculations. It has been shown that the pp-RPA gives quite accurate prediction
of electronic excited states in moderate size molecular systems [10,20].

However, the application of the pp-RPA is still limited to small size systems due to its expensive computational cost.
Suppose N is the size of a given Hamiltonian after discretization, a naive implementation takes O(N®) operations to solve
the pp-RPA equation, where N is the number of orbitals. Recently, [20] proposed an O(N*) algorithm that is comparable
with other commonly used methods, e.g., configuration interaction singles (CIS) and TDDFT methods. To make the applica-
tion of the pp-RPA feasible to larger systems, this paper proposes an O(NNgux + N2Ngux + N2Ngrid) algorithm based on a
newly developed technique, the interpolative separable density fitting in [6,7]. Here Nayx is the number of auxiliary basis
functions used in the density fitting and Ngq is the total number of real space grid points, both scale linearly with N, and

hence the overall scaling of the proposed algorithm is O (N3).
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In the numerical linear algebra point of view, the excited states calculation in pp-RPA amounts to solving a generalized
eigenvalue problem. When focusing on low-lying excitations, the smallest (in terms of the magnitude) few eigenpairs are
desired. We refer the readers to [10] for the formal derivation of the pp-RPA theory.

To simplify the discussion, let us consider systems in the domain with periodic boundary condition, and without loss of
generality, assumed to be T = [0, 1]%. After discretization (such as the pseudo-spectral method employed in our numerical
examples), the number of total spatial grid points is denoted by Ngq. Thus the Hamiltonian operator H becomes an Ngiq x
Ngiig real symmetric matrix. {(€p, ¢p)}p=1 Nerid denote the Ngiq eigenpairs of H:

.....

H¢p=€p¢pv Vp=1»-~~sNgrid- (M

The eigenvectors ¢, will be referred as orbitals and the associated eigenvalues as orbital energy. According to the Pauli’s
exclusion principle, the low-lying eigenstates are occupied. The number of occupied orbitals is denoted by N (throughout
this work, we assume that the Nocc-th eigenvalue is non-degenerate, i.e., €, < €N,+1)- The rest of the orbitals are virtual
ones (also known as unoccupied orbitals). The virtual orbitals have higher orbital energy than the occupied ones; the
eigenvalues are separated by the Fermi energy:

1
€F = 5( Noce +€Nocc+1)' (2)

Therefore, the occupied orbitals have energy less than the Fermi energy while the virtual ones have energy higher than er.

We follow the convention of quantum chemistry literature to use indices i, j, k, and I to index occupied orbitals, a, b, c,
and d for virtual orbitals, and p, q, r, and s for unspecified orbitals. Assume that we consider the first Ny virtual orbitals
(ordered by eigenvalues) and N = Nocc + Nyjr denotes the total number of orbitals under consideration, the generalized
eigenvalue problem of pp-RPA is given by

(- L))

where [, and I are identity matrices of dimension N, = (Ng“) and Nj = (Ni’“‘), respectively, and entries in matrices A, B,
and C are defined via

Ajjit = (ijlIKl) + 8ikdji(€; + € — 2€F),

Bijca = (ijlcd),

Cabed = {(abl|cd) — 8acdpa(€q + €p — 2€F),

for 1 <j<i<Noe,1<l<k<Noe, Nocct+1=<b<a<N,and Nocc +1=<d <c <N, where

(pqllrs) = (pq | rs) — (pq | sr),

and

(pq | rs) :f &p (r) g (r2)dr(r1)ds(r2) ve(r1 —r2) drydr
TxT

is the four-center two-electron repulsion integral. Here v.(-) is the periodic Coulomb kernel (due to our choice of the
periodic boundary condition) given by the fundamental solution of the Poisson equation with a periodic boundary condition
on T:

—AV() =4 (8() = 1), (4)

where §(-) is the Dirac delta function.
The dimension of pp-RPA matrix

( s ﬁ) 5)

is O(N?) x 0(N?); and thus constructing the whole pp-RPA matrix takes at least O (N*) operations, since it contains O (N4)
entries. The action of this matrix to a vector also scales as 0 (N#) in general. Thus, the standard approach for the generalized
eigenvalue problem (3) has a computational cost at least O (N4) for getting a single eigenpair.

In this work, we propose an O (N?) scaling algorithm to obtain a few eigenpairs of the generalized eigenvalue problem
above. The observation is that if an iterative algorithm such as the Jacobi-Davidson eigensolver [15,16] is used, the com-
putational bottleneck is to apply the pp-RPA matrix to a vector (referred as matvec in the sequel); in particular, it is not
necessary to construct the matrix for matvec. An O (N3) matvec is available by an efficient representation of the electron
repulsion integral tensor enabled by the recently proposed interpolative separable density fitting in [6,7]. Combined with
the Jacobi-Davidson iterative eigensolver, this gives a cubic scaling algorithm for the pp-RPA excitation energy calculation.
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