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In this paper, we proposed a new efficient high-order finite volume method for 3D 
elastic wave simulation on unstructured tetrahedral meshes. With the relative coarse 
tetrahedral meshes, we make subdivision in each tetrahedron to generate a stencil for the 
high-order polynomial reconstruction. The subdivision algorithm guarantees the number 
of subelements is greater than the degrees of freedom of a complete polynomial. We 
perform the reconstruction on this stencil by using cell-averaged quantities based on the 
hierarchical orthonormal basis functions. Unlike the traditional high-order finite volume 
method, our new method has a very local property like DG and can be written as an 
inner-split computational scheme which is beneficial to reducing computational amount. 
Moreover, the stencil in our method is easy to generate for all tetrahedrons especially in 
the three-dimensional case. The resulting reconstruction matrix is invertible and remains 
unchanged for all tetrahedrons and thus it can be pre-computed and stored before 
time evolution. These special advantages facilitate the parallelization and high-order 
computations. We show convergence results obtained with the proposed method up to 
fifth order accuracy in space. The high-order accuracy in time is obtained by the Runge–
Kutta method. Comparisons between numerical and analytic solutions show the proposed 
method can provide accurate wavefield information. Numerical simulation for a realistic 
model with complex topography demonstrates the effectiveness and potential applications 
of our method. Though the method is proposed based on the 3D elastic wave equation, it 
can be extended to other linear hyperbolic system.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Wave simulation based on wave equations has important applications in geophysics. For example, wave propagation 
can be applied to detect the structures of oil and gas. Thus an efficient and accurate simulation technique for wave equa-
tions is important. There are many numerical methods to solve wave equations, for example, the finite difference (FV) 
method [36,51], the pseudo-spectral (PS) method [19,29,59], the finite element (FE) method [3,8,60], the spectral ele-

* Corresponding author.
E-mail address: zws@lsec.cc.ac.cn (W. Zhang).

http://dx.doi.org/10.1016/j.jcp.2017.03.050
0021-9991/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2017.03.050
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:zws@lsec.cc.ac.cn
http://dx.doi.org/10.1016/j.jcp.2017.03.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.03.050&domain=pdf


W. Zhang et al. / Journal of Computational Physics 340 (2017) 534–555 535

ment (SE) method [30,31], the discontinuous Galerkin (DG) method [6,15,25] and the finite volume (FV) method [16,17]. 
Each numerical method has its own inherent advantages and disadvantages. First we give a brief review of these meth-
ods.

The FD method is efficient and relatively easy to implement, but the inherent restriction of using regular meshes limits 
its application to complex topography. The PS method can be viewed as the limit of FD with infinite order of accuracy in 
space and it computes the spatial derivatives by using the fast Fourier transform (FFT). However, large amount of forward 
and inverse FFT reduces its computational efficiency.

The FE method is widely used in various problems including wave simulation. With triangle elements in 2D or tetrahedral 
elements in 3D, this method is suited to model complex topography. However, a global mass matrix is required to be 
inverted at each time-step which requires large computational cost. In order to overcome the problem, the mass-lumping 
technique which leads to a diagonal mass matrix is developed [8,9,37]. The SE method overcomes the problem by using 
Gauss–Labatto quadrature rules [10]. It is originally introduced in the computational fluid mechanics [38] and has been well 
applied in the problems of wave propagation in geophysics [30–32,39,43].

The DG method is a high-order conservative method which was first proposed for solving neutron transport equa-
tion [42]. Combined with a time-integration method named Arbitrary high-order DERivatives (ADER), the DG method 
has been widely applied to wave simulation in geophysics [15,18,25,27,40,41,56,57]. In contrast to FE, the solution of 
DG can be discontinuous on the interface of elements and the mass matrix is local rather than global, which espe-
cially facilitates parallelization and high-order schemes are relatively easy to establish. However, the DG method needs 
to compute high-order surface and volume integrals, which can be expensive to compute. For example, a k-th order DG 
scheme requires a 2k-th order quadrature formula for the surface integrals, and (2k − 1)-th order for the volume inte-
grals.

The FV method is very popular in solving linear hyperbolic equations [16,17,33]. It can be extended to high accuracy on 
unstructured grids using a high-order polynomial reconstruction. In the FV method, the discrete values are approximations 
of cell averages, and then it consists of two steps: the reconstruction and flux calculation. By the reconstruction step, 
local values are interpolated from the cell-averaged values. The FV method attains spatial high accuracy by a high-order 
polynomial reconstruction while the discretization in time is usually performed by Runge–Kutta (RK) schemes. In order to 
improve efficiency of RK schemes as the Butcher barrier [5] when the time accuracy is higher than four, the ADER approach 
can be exploited for time-integration. The idea of ADER was first proposed by Toro et al. [50] and it has been combined 
with the DG and FV methods successfully. The resulting ADER-DG and ADER-FV methods are well applied to linear systems 
including wave equations on unstructured meshes [15–17,25]. Recently, a high-order FV method called the spectral finite 
volume (SFV) method is developed on unstructured grids [34,48,52–55]. The SFV method is so called to achieve high-order 
accuracy in an efficient manner similar to the SE method. A detail comparison between DG and SFV may refer to the 
references [47,58].

In order to simulate wave propagation on unstructured meshes efficiently, the FV method is a good choice due to its high 
computational efficiency and good adaptability to complex geometry. The aim of this paper is to illustrate a new efficient FV 
method for 3D elastic wave simulation on unstructured meshes. We will incorporate some nice features from the DG and 
FV methods [15–18,24,25,27] and the SFV method [34,48,52–55]. In our method, the computational domain is first meshed 
with relative coarse tetrahedrons. Then, each tetrahedron is further divided as a collection of finer tetrahedral subelements 
to form a stencil. The high-order polynomial reconstruction is performed on this stencil by using local cell-averaged values 
on the finer elements. Our method can be considered as the extension of the high-order FV work of Dumbser et al. [18]. 
Our method has three main advantages. The first one is that the reconstruction matrix on all coarse tetrahedrons remains 
unchanged and it can be pre-computed and stored before time evolution. The second one is that, by using a suitable 
number of finer tetrahedrons, we obtain an over-determined reconstruction system which has very local property and this 
fact also enhances the parallelization of our algorithm. The third one is that our method can be written as an inner-split 
computational scheme which is beneficial to reducing computational cost. We will present numerical results to show the 
performance of our method. We remark that the new method can be applied to other linear hyperbolic system without 
essential difficulty.

The rest of this paper is organized as follows. In Section 2, the theoretical method is described in detail. In Section 3, 
numerical results are given to illustrate the effectiveness of our method. Finally, conclusions are drawn in Section 4.

2. Theoretical method

2.1. The governing equation

The 3D elastic wave equation with external sources in velocity–stress formulation can be written as the following system 
[15,36]
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