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Many biological fluids, like mucus and cytoplasm, have prominent viscoelastic properties. 
As a consequence, immersed particles exhibit subdiffusive behavior, which is to say, the 
variance of the particle displacement grows sublinearly with time. In this work, we 
propose a viscoelastic generalization of the Landau–Lifschitz Navier–Stokes fluid model and 
investigate the properties of particles that are passively advected by such a medium. We 
exploit certain exact formulations that arise from the Gaussian nature of the fluid model 
and introduce analysis of memory in the fluid statistics, marking an important step toward 
capturing fluctuating hydrodynamics among subdiffusive particles. The proposed method 
is spectral, meshless and is based on the numerical evaluation of the covariance matrix 
associated with individual fluid modes. With this method, we probe a central hypothesis of 
passive microrheology, a field premised on the idea that the statistics of particle trajectories 
can reveal fundamental information about their surrounding fluid environment.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many fundamental biological processes concern the movement of microparticles in complex fluids – that is, liquids that 
contain suspended polymers, microbes, or other microstructures. For example, mucus is a suspension of oligomeric mucin 
proteins in a water-like fluid and whole blood is a suspension of red blood cells in plasma. Complex fluids are noted for 
the wide variety of mechanical responses they exhibit as a function of applied strain/stress. In response to certain stimuli, 
a complex fluid will act like a solid, but in response to other stimuli, the same fluid will act like a liquid. These viscoelastic 
rheological properties are often caused by interactions between suspended microstructures and a viscous background fluid 
[1–4].

Particles diffusing in viscous fluids act like classical Brownian motion, but particles moving in viscoelastic fluids tend to 
be statistically distinct, exhibiting the effects of memory and long-range particle–particle correlation. Indeed the motion of 
foreign microparticles in complex fluids is very rarely well-described by classical Brownian motion. The primary statistical 
tool used in particle tracking analysis is mean-squared displacement (MSD), the empirical second moment of change in 
particle position. For particles moving in a purely viscous fluid, the MSD grows linearly with time; while, in viscoelastic 
media, the MSD scales nonlinearly. Recent interest in material properties of biological fluids has led to the cataloguing of 
numerous natural examples of this so-called anomalous diffusion. For a few examples, see [5–9].

* Corresponding author.
E-mail addresses: choheneg@math.utah.edu (C. Hohenegger), scott.mckinley@tulane.edu (S.A. McKinley).

1 Previously affiliated with University of Florida, Department of Mathematics, Gainesville, FL.

http://dx.doi.org/10.1016/j.jcp.2017.03.053
0021-9991/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2017.03.053
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:choheneg@math.utah.edu
mailto:scott.mckinley@tulane.edu
http://dx.doi.org/10.1016/j.jcp.2017.03.053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.03.053&domain=pdf


C. Hohenegger, S.A. McKinley / Journal of Computational Physics 340 (2017) 688–711 689

The widespread observation of anomalous diffusion in complex fluids has led to the development of several mathematical 
models that have been variously successful in describing the paths of individual particles. For example, it was recently 
demonstrated that the motion of 500 nm radius latex beads in human mucus is well-described by fractional Brownian 
motion (FBM) [10]. Subsequently it was shown that a force-balance approach to modeling, called the generalized Langevin 
equation (GLE), can provide an even more faithful model for the data [11].

However the extension of single-particle theory to that of multiple interacting particles remains elusive. FBM and GLE are 
characterized by anti-persistent memory effects (meaning that movement in one direction during one time step is positively 
correlated with movement in the opposite direction in the next) that result from the storage of energy and response by the 
surrounding viscoelastic medium. There is no doubt that the medium also communicates disturbances nonlocally across 
distances as well, and it stands to reason that two proximate particles should have nontrivial interactions with each other. 
While there exist mathematical frameworks that might have the potential to do so (see complex fluid models like [12]
and [13] for example), we know of no work that shows immersed particles behaving as FBM or GLE when alone, but 
when nearby each other, interacting through fluctuating hydrodynamics. In this article, we take a step in this direction by 
developing a modeling and simulation framework for particles that are passively advected by a linear viscoelastic fluid.

Because our fluid–particle model will require the interaction of forces, we adopt a GLE approach. The GLE is a stochastic 
integro-differential equation that was introduced by Kubo [14] and then revived for the purpose of modeling viscoelastic 
diffusion by Mason and Weitz [15]. Here we adopt the following definition for the GLE, which describes the velocity V (t)
of a particle:

mdV (t) =
(
− γs V (t) − γp

τ

t∫
−∞

K (t − s)V (s)ds +
√

kB Tγp

τ
F (t)

)
dt +√

2kB Tγs dW (t). (1)

When referring to the particle position, X(t) = ∫ t
0 V (s)ds, we say that X satisfies the integrated GLE (iGLE). The GLE (1)

is a balance of forces equation relating the particle’s acceleration to its velocity history and to thermal fluctuations in the 
fluid environment. Here, m is the particle’s mass, kB is Boltzmann constant and T is the temperature. The force of friction 
is decomposed into two components: the drag due to solvent viscosity γs and drag due to the polymeric component of 
the fluid environment, comprised of a memory kernel K (t), a leading drag coefficient γp , and a normalizing constant τ =∫∞

0 K (s)ds that has units of [time]. The memory kernel K summarizes the fluid environment’s capacity to store energy and 
act back on a particle after a given increment of time. For discussion on the inclusion of instantaneous viscous response term 
see [16]. The force due to thermal fluctuations is also decomposed into solvent and polymeric component contributions. The 
term W (t) is a standard Brownian motion, while F (t) is a stationary Gaussian process with mean 0 and autocovariance given 
by

E [F (t)F (s)] = K (t − s). (2)

This form for the noise is posited in accordance with the fluctuation–dissipation relationship [14]. In Section 2, we establish 
some basic facts about the GLE, including a discussion of our choice for the memory kernel K and our method of simulation.

Initial efforts to model the interaction of multiple particles used a system of GLEs with an interaction term meant to 
summarize the hydrodynamic influence of one particle on the other [17–20]. However, when implementing the noise terms, 
these methods tended to ignore correlations that exist with past position and velocity. In particular, there is disagreement 
about how to enforce the fluctuation–dissipation relationship among multiple beads and through the background fluid 
without directly modeling the fluid velocity field as well. For this reason it is appealing to note recent developments in 
numerical fluid–particle coupling methods [12,21–23]. When considering neutrally buoyant particles in an incompressible 
fluid, the stochastic Immersed Boundary Method has been particularly successful in capturing statistical properties of par-
ticle trajectories in viscous fluids [24–28]. In this work, we present an important step toward implementing the stochastic 
IBM for viscoelastic fluids: generalizing the fluctuating Landau–Lifschitz Navier–Stokes equations for viscoelastic fluids and 
simulating trajectories of passively advected immersed particles.

In Section 3 we develop our model for the fluid velocity field u and explore the challenges that exist in generating 
efficient and accurate simulations. The main difficulty arises from two key issues. The first is that, unlike the stochastic IBM 
for viscous fluids, which can employ step-by-step simulation techniques exploiting the Markov property, the primary tool 
available for our model is the theory of stationary Gaussian processes. While conceptually straightforward, the implemen-
tation presents many practical problems, mostly stemming from our second challenge: that the physical regime of interest 
corresponds to a situation where the memory kernel has a very slow (power law) decay. As explained in the next section, 
we use a memory kernel whose form is a sum of exponential functions. The “more viscoelastic” a fluid is, the more terms 
are necessary in the sum, in turn complicating calculations involving the temporal Fourier transform.

For a neutrally buoyant particle, we consider the equation of motion to be given by averaging over a small region of the 
fluid velocity field u(x, t) centered at the particle location:

dX(t)

dt
=
∫

δa(x − X(t))u(x, t)dx. (3)
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