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An hierarchical simulation approach for Boltzmann’s equation should provide single nu-
merical framework in which a coarse representation can be used to compute gas flows 
as accurately and efficiently as in computational fluid dynamics, but a subsequent refine-
ment allows to successively improve the result to the complete Boltzmann result. We use 
Hermite discretization, or moment equations, for the steady linearized Boltzmann equation 
for a proof-of-concept of such a framework. All representations of the hierarchy are rota-
tionally invariant and the numerical method is formulated on fully unstructured triangular 
and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demon-
strate the performance of the numerical method on model problems which in particular 
highlights the relevance of stability of boundary conditions on curved domains.
The hierarchical nature of the method allows also to provide model error estimates by 
comparing subsequent representations. We present various model errors for a flow through 
a curved channel with obstacles.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

From the point of view of non-equilibrium thermodynamics there are two fundamentally different approaches to flow 
computations. The vast majority are based on fluid dynamic equations using the classical closure relations of Navier–Stokes 
and Fourier [17]. Sometimes these relations maybe refined or extended [28,34], but those models still remain in the context 
of macroscopic field theories [27]. On the other hand, if one is interested in precise non-equilibrium predictions, typically 
the Boltzmann equation is solved for the velocity distribution function of the particles [7].

The differences of the approaches are evident both mathematically and numerically. There is the use of continuum fields, 
like flow velocity and temperature in fluid dynamics on the one side and the microscopic probability function of the particle 
velocities on the other. Often, the distribution function is considered the cost to pay for increased non-equilibrium accuracy. 
Still, engineering fields are the preferred variables in applications and only obtained indirectly by averaging the distribution 
function. Numerically, there exists a very rich literature on different methods how to solve partial differential equations of 
fluid dynamics, from Finite-Volume (FV) to Finite-Element (FE) methods [20,14], which are still further developed. These 
often deal with accurate representation of the fields and the handling of nonlinearities in the equations. The Boltzmann 
equation, on the other hand, is frequently solved by particle methods, like the direct simulation Monte-Carlo method [3], 
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where a central issue is given by speed-up [15] and noise reduction [2]. Direct discretizations use basic ingredients of the 
FV- or FE-approaches [8], but most effort goes into the efficient computation of the collision integral [23,12].

It is interesting to note, that any numerical approach to solve the Boltzmann equation necessarily contains a numerical 
method for fluid dynamic equations in the asymptotic limit of small mean free paths (small Knudsen number). While this 
limit may not be the focus of a Boltzmann solution, it is reasonable to expect that a serious implementation of the Boltz-
mann equation for flow computations should at least exhibit the capability of a fluid dynamic flow solver. On the other hand 
computing flow based on fluid dynamic equations is usually challenged by model errors when applied to non-equilibrium 
flows. In many cases model errors dominate numerical discretization errors and estimating these errors in an efficient way 
becomes essential when judging the results for flow applications.

This paper aims at a hierarchical simulation approach for the Boltzmann equation with the properties:

• The discretization of the Boltzmann equation ranges from coarse to fine representations in a cascading hierarchy using 
a single numerical framework.

• The coarse representation should result in an accurate and efficient numerical method to solve the classical fluid dynamic 
equations within the single framework.

• The finer representations give a valid and successively better numerical discretization of the Boltzmann equation which 
allows high accuracy.

• All representations are rotationally invariant such that the numerical method can handle unstructured meshes and pos-
sibly complex geometries easily.

• The framework should provide a systematic for model error estimation between the different representations and allow 
model-refinement local in space.

To present a proof of concept for such a framework this paper will consider steady and slow processes (low Mach number) 
and thus linear equations. The main challenge is to find a formulation that can include both the hyperbolic nature of 
the Boltzmann transport process in the fine representation as well as the elliptic nature of the Stokes problem in the 
coarse representation. We use a Hermite-discretization which results in hyperbolic relaxation systems, known as moment 
equations [21,5], that are solved with a discontinuous Galerkin method [18]. The Hermite-discretization yields the classical 
fluid dynamic equations in a reformulated way which fit into the framework. Additionally, stable boundary conditions are 
an essential ingredient. The entropy estimate for the hyperbolic systems provides simple conditions to guarantee stability of 
boundary conditions [29,24] and we demonstrate and discuss the numerical impact of these conditions for several simplified 
model systems. We also show that the coarsest representation in the framework gives an accurate discretization to fluid 
dynamic equations.

The hierarchy of representations allows to quickly obtain model error estimates by comparing a result with the solution 
on the next finer level. To demonstrate this approach we will consider the flow through a curved channel with obstacles 
and efficiently estimate the local model error of a classical fluid dynamic simulation within the hierarchical Boltzmann 
framework. The local errors of finer representations can be estimated in an analogous way and an example is also given. 
Local model refinement and using different representations in different domains is left for future work.

The original idea of using moment equations for hierarchical simulations was formulated by Müller in the context of 
extended thermodynamics, see the text book [21]. The moment systems were introduced as ‘theory of theories’ in which 
the convergence behavior of subsequent systems was used to predict their validity. Both well-posed boundary conditions 
and suitable computational methods were not available so that the examples of extended thermodynamics were mostly 
simple cases.

Note that the requirement to have a valid discretization for fluid dynamic equations on the coarsest level is similar to 
asymptotic preserving schemes [10]. However, in this paper no smallness parameter is involved, instead we demand that 
when reducing the numerical degrees of freedom for the Boltzmann discretization we literally arrive at a fluid dynamics 
implementation. The approach in [9] is similar in spirit, but lacks the cascading hierarchical setup.

The implementation of the methods presented in this paper is freely available at the website GitHub [36]. This code not 
only is capable to produce the simulation results presented, but also contain the explicit details of the large system matrices 
and analytical solutions used. In this way the code complements the information of this paper.

2. Hermite-discretization for the Boltzmann equation

We consider the Boltzmann equation for monatomic ideal gases in the form

∂ f

∂t
+ ci

∂ f

∂xi
= S ( f ) (1)

where S( f ) is the collision operator. The Maxwell distribution

f M (c;ρ,v, θ) = ρ/m(2πθ)−3/2 exp

(
− (ci − vi)(ci − vi)

2θ

)
(2)
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