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Scattering from large, open cavity structures is of importance in a variety of electromag-
netic applications. In this paper, we propose a new well conditioned integral equation 
for scattering from general open cavities embedded in an infinite, perfectly conducting 
half-space. The integral representation permits the stable evaluation of both the electric 
and magnetic field, even in the low-frequency regime, using the continuity equation in 
a post-processing step. We establish existence and uniqueness results, and demonstrate 
the performance of the scheme in the cavity-of-revolution case. High-order accuracy is 
obtained using a Nyström discretization with generalized Gaussian quadratures.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The computation of electromagnetic wave propagation in the presence of large, open cavities is an important modeling 
task. It is critical, for example, in understanding the effect of exhaust nozzles and engine inlets on aircraft, as well as 
surface deformations in automobiles and other land-based vehicles [4,8,29,31,33]. The presence of such structures plays 
a dominant role in both the near field, where electromagnetic interference is of concern, and in the far field, where the 
radar cross-section can be used for identification and classification (including stealth-related calculations). Fast and accurate 
solvers to simulate such scattering phenomena are essential for both design optimization and verification.

A variety of numerical methods have been proposed to solve such scattering problems. Largely speaking, they fall into 
two categories. The first is direct numerical simulation using finite difference [8], finite element [33], mode-matching [5]
and boundary integral methods [8,38]. The second is asymptotic methods, including Gaussian beam approximations [13]
and physical optics-based schemes [32]. The latter methods tend to work well at very high frequencies in the absence 
of multiple near-field scattering events, and are generally not well suited for high-precision calculations in geometrically 
complex environments. Solving the governing Maxwell equations using finite difference and finite element methods, on the 
other hand, requires the discretization of an unbounded domain. In practice, these methods must either employ approx-
imate outgoing boundary conditions to mimic the radiation condition at infinity, or be coupled with a boundary integral 
representation beyond some distance so that the radiation condition is satisfied exactly. In the present work, we will focus 
on boundary integral equation methods since they are free from grid-based numerical dispersion, can achieve high-order 
accuracy in complex geometry, and require degrees of freedom only on the boundary of the scatterer itself, greatly reducing 
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Fig. 1. A cavity �1 in a perfectly conducting half-space x3 ≥ 0, with boundary �. The surfaces C1 and C2 define the two halves of a sphere C which is 
sufficiently large to contain the cavity and a finite buffer region, denoted by B , in the x1x2-plane beyond the edge of the cavity. The curve � denotes the 
outer edge of the buffer region B . The unbounded half-space boundary outside of C is denoted by �c .

the number of unknowns. The Green’s function used to represent the solution satisfies the outgoing (radiation) condition 
exactly. Existing integral representations for cavity problems, however, generally yield integral equations of the first-kind [1]. 
First-kind equations can lead to ill-conditioned discrete linear systems, especially if substantial mesh refinement is required. 
Refined meshes may be needed, for example, to resolve geometric singularities. Furthermore, several existing formulations 
also suffer from spurious resonances, including those of mixed first-/second-kind systems [38]. Finally, because of the nature 
of the dyadic Green’s function for the electric field, standard methods based on discretizing the physical electric current also 
suffer from low-frequency breakdown [16,40]. This behavior is discussed in more detail below.

In this paper, we propose a new representation of the scattered field that leads to a well-posed (resonance-free) integral 
equation which is immune from low-frequency breakdown. This allows for a stable numerical discretization along arbitrarily 
adaptive meshes. In our numerical examples, using the fact that the scatterer (i.e. the cavity) is axisymmetric permits us 
to use separation of variables in cylindrical coordinates, applying the Fourier transform in the angular (azimuthal) variable. 
This procedure leads to a sequence of uncoupled two-dimensional boundary integral equations on the generating curve that 
defines the cross-section of the boundary of the scatterer (see Fig. 3). There are various numerical technicalities associated 
with implementing body-of-revolution integral equation solvers, and we do not seek to review the substantial literature 
here. We instead refer the reader to [23,24,28,34,39] and the references therein. A concise overview of the discretization 
and resulting solver is given in Section 5. Similar high-order techniques have been applied to solve the Helmholtz equation 
on surfaces of revolution [23,24,34,39] and the full Maxwell equations (for closed-cavity resonance problems) in [25].

Due to the applicability of cavity scattering in physics and engineering, there has been much work dedicated to both the 
mathematical and numerical aspects of the problem. The well-posedness of the (forward) scattering problem is discussed 
in [1,2] in the case of the two-dimensional problem, and in [3] for the three-dimensional case. The paper [9] provides the 
explicit dependence of the scattered field on the wavenumber in the high-frequency context. In [4,30], the authors studied 
uniqueness and stability issues for the inverse problem, where one seeks to recover the shape of an unknown cavity using 
near-field data. The corresponding optimal design problem, i.e. to find a cavity shape that minimizes the radar cross section, 
under certain constraints, is discussed in [6,7] in the two-dimensional setting.

An outline of the paper follows: Section 2 provides a detailed introduction to the problem of scattering from an open 
cavity and proposes an integral representation that leads to a well conditioned integral formulation. In Section 3, we prove 
that this integral equation has a unique solution for a given incident field. In Section 4, we show how to avoid low-frequency 
breakdown merely by the use of various vector identities and physical considerations. In Section 5, we briefly discuss the 
separation of variables solver for axisymmetric cavities, and then illustrate its accuracy and stability in Section 6. Section 7
contains a brief discussion of open problems and some concluding remarks.

2. Mathematical formulation of the scattering problem

Suppose now that a perfectly conducting cavity �1 extends into the lower half-space x3 < 0, as depicted in Fig. 1. See 
the caption of Fig. 1 for a description of the geometrical setup. The region in the lower half-space with boundary � ∪ B ∪�c

is assumed to be perfectly conducting. Given a time harmonic incident field (Ẽinc, H̃inc) with an assumed time dependence 
of e−iωt , we seek to find the scattered field (Ẽsc, H̃sc) so that the total field

Ẽ = Ẽinc + Ẽsc, H̃ = H̃inc + H̃sc

satisfies the Maxwell equations

∇ × Ẽ − iωμ H̃ = 0,

∇ × H̃ + iωε Ẽ = 0

for x ∈ R
3+ ∪ �1. The material parameters are given by ε, the electric permittivity, and μ, the magnetic permeability. 

Assuming ε and μ are constant, it is convenient to denote suitably normalized fields by E = √
εẼ, H = √

μH̃, etc., leading 
to a simpler form of Maxwell’s equations
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