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In this work, the shock-fitting technique is further developed on unstructured dynamic 
meshes. The shock wave is fitted and regarded as a special boundary, whose boundary 
conditions and boundary speed (shock speed) are determined by solving Rankine–Hugoniot 
relations. The fitted shock splits the entire computational region into subregions, in which 
the flows are free from shocks and flow states are solved by a shock-capturing code based 
on arbitrary Lagrangian–Eulerian algorithm. Along with the motion of the fitted shock, an 
unstructured dynamic meshes algorithm is used to update the internal node’s position to 
maintain the high quality of computational meshes. The successful applications prove the 
present shock-fitting to be a valid technique.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Shock waves occur when the gas is sharply compressed. In all flow fields in which they occur, shock waves play an 
important role that affects the overall flow behavior. Computing the shock waves correctly represents a difficult problem.

In 1950, von Neumann pioneered the concept of adding sufficient artificial viscosity to the inviscid flow equations to 
capture the shock [1]. In 1954, Lax proposed the famous “weak solution theory” which solves the governing equations in 
integral form rather than in differential form [2]. Based on the weak solution theory, various shock-capturing schemes were 
devised and widely used for solving two dimensional steady flows [3,4]. However, due to a presence of spurious numerical 
oscillations in the vicinity of the shock waves, applications of high order shock-capturing schemes were greatly limited.

Subsequently, studies of the underlying mechanisms that produce these oscillations have attracted the attention of many 
scientists [5–7]. These studies proved to be successful and led to algorithms known as oscillation-free schemes. Many 
capturing algorithms were developed and used, including total variation diminishing (TVD) schemes [8–11], essentially 
non-oscillatory (ENO) schemes [12], weighted essentially non-oscillatory (WENO) schemes [13], non-oscillatory and non-
free-parameter dissipation difference (NND) schemes [14].

Despite several creative mathematical solutions proposed to improve the basic shock-capturing technique, it still failed 
at what was its initial goal. Due to the inability of high-order capturing schemes to pass correctly information through a 
discontinuity [15], limiter functions are needed in these shock-capturing schemes. A designed limiter function takes effect 
in the region with a steep gradient so that a discontinuity is smeared over a few grid points in a shock-capturing algorithm. 
Therefore, a captured shock relies heavily on the computational mesh. Mesh refinement is a direct way to increase the so-
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lution quality without considering the computational cost. However, the mesh refinement does not reduce the oscillations, 
rather it decreases the wave length [16]. In other words, the approach to improve solution quality by refining the mesh has 
not changed the dependency on the use of limiter functions. The situation is worse if the computational mesh is unstruc-
tured. This is because there is always at least one face not aligned with the shock on an unstructured mesh. The damage 
brought about by orthogonality increases the amplitude of these spurious oscillations. Some studies [17,18] on a truly multi-
dimensional or rotational upwind scheme have been applied to eliminate these spurious oscillations. Due to the limitations 
of the current technology, the studies of multidimensional schemes have not entirely solved the problems of oscillations. As 
Arora and Roe [19] pointed out, it is difficult to ensure a captured shock to be both narrow and oscillations-free.

As an alternative, the shock-fitting technique is reconsidered to eliminate the disadvantages in dealing with shock waves 
by the shock-capturing technique. The shock-fitting technique was a reliable tool to simulate a shock wave since the dawn 
of computational fluid dynamics (CFD). In the 1960s, Moretti et al. [20] developed a shock-fitting technique together with 
the Lax–Wendroff scheme, which produced a set of solutions of supersonic blunt body flows requiring only 6 minutes on 
a CDC 6600 computer. This work greatly advanced the development of computational gas dynamics at the time. In 1967, 
Richtmyer and Morton [21] proposed what was known as floating shock-fitting method, which admitted the fitted shock 
wave to float on the background mesh. The floating shock-fitting eliminated the problems associated with partitioning the 
flow field using the boundary-shock implementation. Salas [22] applied the floating-shock fitting technique to simulate flows 
with internal discontinuities, including shock waves and contact surfaces, which greatly promoted the development of the 
shock-fitting technique. The floating shock-fitting technique was implemented and combined with a second-order-accurate 
upwind scheme by Hartwich [23], which makes it possible to construct a general, non-conservative Euler solver. With 
additional studies, more and more complicated flows were solved by the shock-fitting technique [24]. For example, Nasuti 
and Onofri used Moretti’s shock-fitting technique to compute flows including triple points and shock interactions [25]. In 
addition, high-order accuracy algorithms were applied with the shock-fitting technique. In 1999, Kopriva [26] combined the 
shock-fitting technique with the spectral method and applied this method to the computation of supersonic flows. Indeed, 
the idea of combining the spectral approximation performed only on smooth portions of the flow with a precise description 
of a shock discontinuity provided by the shock-fitting technique has gained significance for constructing new computational 
algorithms. In addition, Zhong et al. [27,28] have coupled the high-order finite difference method (FD) with the shock-fitting 
method and applied it to some hypersonic flows.

Though considerable progress has been achieved with the shock-fitting technique, it has always been unpopular due to 
a difficult implementation. In terms of coding simplicity, special treatment for discontinuities is not necessary in the shock 
capturing. To the contrary, in shock-fitting, there are often special points requiring ad hoc treatments, in addition to the 
topological difficulties that come along with the presence of multiple shocks. The rapid growth of computational resources 
has given a strong support to CFD. Thus, when computational resources are not limited, most people would prefer a simple 
algorithm rather than an efficient one.

Researchers practicing shock-fitting proved to be resourceful in search for a viable solution. A shock-fitting technique 
implemented on unstructured grids has been presented by Paciorri and Bonfiglioli [29,30] and by Bonfiglioli et al. [31]. Com-
pared with the traditional boundary shock-fitting technique on structured grids, the unstructured version of the technique 
does not suffer from the strong topological limitations that plague boundary shock-fitting implementation on structured 
grids. In addition, compared with the floating shock-fitting technique, the coupling between shock-fitting algorithms and 
existing gasdynamic solvers is much simpler for unstructured and structured grids. Salas [32] supported the work based on 
unstructured grids because of its great potential to generalize the shock-fitting technique in the future.

In the present work, a new method to fit the shock wave is developed based on unstructured dynamic meshes. In the 
present fitting technique, fitted shocks are treated as discretized boundaries of the computational region. Its motion is driven 
by the Rankine–Hugoniot (R–H) jump relations. Once all parameters on the shock boundary are determined, fitted shocks 
are used to move boundaries. In addition, new positions of internal nodes are determined by an unstructured dynamic 
meshes technique. Along with the motion of the fitted shock, an unstructured dynamic meshes algorithm is used to update 
the internal nodes’ positions to ensure the high quality of the computational mesh.

2. Computational algorithms

In this work, we have combined the shock-fitting algorithm with a previous shock-capturing code [33], which includes 
the unstructured dynamic meshes algorithm. In order to introduce our work clearly, the new computational code is denoted 
MCFS. In this new code, the present shock-fitting algorithm is used to determine the shock points’ motion and compute the 
boundary fluxes across each shock boundary face.

We will consider a flow field in which several shock waves occur. As MCFS is used to simulate the flow field, three types 
of solutions can take place. One of them is the captured solution. In this solution, there is no shock boundary defined in 
the flow field. By contrast, a fully-fitted solution is obtained when all shock waves in the flow field are fitted as the shock 
boundary. If some but not all shock waves are fitted, a hybrid solution is obtained.

This section provides a detailed description of the proposed fitting technique along with a brief introduction of the 
shock-capturing algorithm and unstructured dynamic meshes technique.
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