Accepted Manuscript

A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

Kejia Pan, Dongdong He, Hongling Hu, Zhengyong Ren

PII:	S0021-9991(17)30357-1
DOI:	http://dx.doi.org/10.1016/j.jcp.2017.04.069
Reference:	YJCPH 7335

To appear in: Journal of Computational Physics

Received date: 21 September 2016
Revised date: 6 February 2017
Accepted date: 27 April 2017

Please cite this article in press as: K. Pan et al., A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems, J. Comput. Phys. (2017), http://dx.doi.org/10.1016/j.jcp.2017.04.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

Kejia Pan ${ }^{\text {a }}$, Dongdong $\mathrm{He}^{\text {b }}$, Hongling Hu ${ }^{\text {c }}$, Zhengyong Ren ${ }^{\text {d,e,* }}$
${ }^{a}$ School of Mathematics and Statistics, Central South University, Changsha 410083, China
${ }^{b}$ School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
${ }^{c}$ Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China
${ }^{d}$ School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
${ }^{e}$ Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, Changsha 410083, China

Abstract

In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H^{3}-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.

Keywords: Richardson extrapolation, cascadic multigrid method, elliptic equation, quadratic FE interpolation, high efficiency
2000 MSC: 65N06, 65N55

1. Introduction

Elliptic boundary value problems arise in many physical problems. Consider the following three dimensional (3D) elliptic problem:

$$
\left\{\begin{array}{rlrl}
-\nabla \cdot(\beta(\mathbf{x}) \nabla u) & = & f(\mathbf{x}) & \tag{1}\\
\text { in } \Omega \\
u & =g_{D}(\mathbf{x}) & & \text { on } \Gamma_{D} \\
\alpha(\mathbf{x}) u+\beta(\mathbf{x}) \frac{\partial u}{\partial n} & = & g_{R}(\mathbf{x}) & \\
\text { on } \Gamma_{R}
\end{array}\right.
$$

where α and β are smooth functions on $\bar{\Omega}$ and $0<\beta_{\min } \leq \beta \leq \beta_{\max }$ for every $\mathbf{x} \in \Omega, f: \Omega \rightarrow \mathfrak{R}, g_{D}: \Gamma_{D} \rightarrow \Re$ and $g_{R}: \Gamma_{R} \rightarrow \mathfrak{R}$ are assigned functions. Here Ω is a bounded convex domain in R^{3} with Dirichlet boundary Γ_{D} and

[^0]
https://daneshyari.com/en/article/4967467

Download Persian Version:
https://daneshyari.com/article/4967467

Daneshyari.com

[^0]: *Corresponding authors.
 E-mail address:pankejia@hotmail.com(K.J. Pan), dongdonghe@tongji.edu.cn(D.D. He), hhling625@163.com(H.L. Hu), renzhengyong@csu.edu.cn(Z.Y. Ren)

