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process. In recent decades, many researches have been conducted for the Lagrangian,
rezoning and surface reconstruction phases, but less attention has been paid to the

ﬁmﬁ;ﬂial ALE method multi-material remapping phase especially for the three-dimensional problems due to two
Intersection-based remapping complex geometric problems: the polyhedron subdivision and the polyhedron intersection.
Polyhedron intersection In this paper, we propose a “Clipping and Projecting” algorithm for polyhedron intersection
Polyhedron subdivision whose basic idea comes from the commonly used method by Grandy (1999) [29] and Jia

et al. (2013) [34]. Our new algorithm solves the geometric problem by an incremental
modification of the topology based on segment-plane intersections. A comparison with Jia
et al. (2013) [34] shows our new method improves the efficiency by 55% to 65% when
calculating polyhedron intersections. Moreover, the instability caused by the geometric
degeneracy can be thoroughly avoided because the geometry integrity is preserved in
the new algorithm. We also focus on the polyhedron subdivision process and describe an
algorithm which could automatically and precisely tackle the various situations including
convex, non-convex and multiple subdivisions. Numerical studies indicate that by using
our polyhedron subdivision and intersection algorithm, the volume conversation of the
remapping phase can be exactly preserved in the MMALE simulation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Simulation of fluid with multiple-materials is a great challenge in computational mechanics and the choice of the
computational grid is significant. Generally, there are two basic descriptions, the Lagrangian description and the Eulerian
description. In Lagrangian description, the computational grid is embedded with material so that the material interface is
always the grid boundary which can be tracked innately but the grid will be distorted when materials experience a large
deformation. On the contrary, in the Eulerian description, the computational grid is fixed which overcomes the grid dis-
tortion but loses the surface information because it will advect across the cells during the simulation. In order to combine
the merits of Lagrangian and Eulerian description, Hirt et al. developed an arbitrary Lagrangian-Eulerian (ALE) method [1]
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which allows the motion of grid being defined as an independent degree of freedom. In ALE frame, the best properties of
Lagrangian and Eulerian descriptions are preserved and many authors have demonstrated that ALE schemes are important
due to its accuracy, robustness and efficiency [2-6].

The traditional ALE scheme requires the coincidence of the material surface and cell boundary which can be easily
achieved when the material surface deforms slightly. However, when it deforms severely, it is very difficult to obtain a new
grid with high quality and in some extreme cases where the topology of the surface changes, it is almost impossible to
perform rezoning phase successfully. To solve the problem, Peery et al. developed a multi-material ALE (MMALE) method to
simulate the strong shearing flow with severe surface deformation [7]. The main improvement of MMALE method is that it
allows for multiple materials in a single cell so that the material surface need not to be coincided with the cell boundary.
Therefore, the MMALE method can simulate problems involving severe grid and surface deformation which are very difficult
for the traditional ALE method.

The major process of the MMALE is similar to the traditional ALE method. Firstly, the Lagrangian phase is performed to
update the node position and material state [8-15] but in MMALE method, a closure model [16-19] is required to determine
the pressure of the mixed cells. After several Lagrangian steps, the grid will be distorted and the rezoning phase [20-25] is
performed to generate a new grid with high quality. Afterwards, the remapping phase will interpolate the variables, such as
the density, internal energy, velocity, from the old distorted grid to the new rezoned grid and in the MMALE method, the
information for surface reconstruction, such as the volume fraction and the material centroid, should also be interpolated.
Finally, we discard the distorted grid and the Lagrangian phase will be restarted again on the rezoned grid.

Generally, the remapping phase can be constructed by two approaches: the “face-based” scheme [26-28] and the
“intersection-based” scheme [29-31]. These two schemes are based on the geometrical relationship between the old and
the rezoned grid. The “face-based” scheme is in a flux form and the flux is determined by the relative position between
the new cell’s boundary and its associated old cell’s boundary. This scheme only considers the flux across the cell face and
ignores the flux from the cell corner. Therefore, the “face-based” scheme is highly efficient and can be implemented easily.
However, there are two major limitations of the “face-based” scheme. 1. The rezoned grid must be in the same topology
of the old grid and close to it in order to find the correct flux region. 2. In the multi-material remapping process [32], the
“face-based” scheme may lead to problematic situations, such as negative mass and inaccurate material fragmentation.

On the other hand, the “intersection-based” scheme interpolates the variables by calculating the intersection portions of
the old and the rezoned grid. Each intersection piece will carry the information from the old grid and then be reassembled
into the rezoned grid to obtain the variables on it [28]. There are many advantages in the “intersection-based” schemes:
1. The rezoned grid need not to be close to the old grid and their topology can even be different. 2. The materials’ vol-
ume fraction and centroid for surface reconstruction can be interpolated accurately by the “intersection-based” schemes.
However, the toughest difficulty in this scheme is calculating the intersection of different grids which is a very compli-
cated geometric problem. A sampling technique was used by Horak in a two-dimensional grid intersection [31] to avoid
the difficult geometric analysis but it is inaccurate and suffers from a low speed of convergence. A three-dimensional grid
intersection method was proposed by Dukowicz and Padial [30], which defines the cell boundaries as a bilinear quadric sur-
faces and then approximate the profile of intersection by the surface-edge intersection. This algorithm runs into difficulty
in some situations such as highly distorted meshes. Powell and Abel calculated the intersection of two convex polyhedrons
by sequentially clipping one against the faces of the other [33], but this method is only suitable for convex polyhedrons.
Grandy proposed a way to calculate the intersection between a polyhedron and a tetrahedron [29] which can precisely cal-
culate the intersection portion through an extremely complex geometric analysis. Jia et al. simplified part of this algorithm
[34]. The complexity of this algorithm will hinder the efficient assessment and it may fail in real implementation due to the
geometric degeneracies [34].

Recently, some hybrid remapping methods for multi-material remapping were developed which combine the advantages
of the above two basic schemes [32,35,36] but all of them are only applied in two-dimensional problem. Because the calcu-
lation of polyhedron-polyhedron intersection is significantly more complicated than polygon-polygon intersection, research
on MMALE method mostly focuses on 2D problem [7,37-39]. To the best of our knowledge, there is only one public paper
which involves 3D-MMALE method [34] but it does not solve the geometric problem successfully because many nonphysical
material fragments occur in its 3D numerical examples. In summary, despite many accomplishments that have been made
on MMALE method, efforts are still needed for a more accurate, robust, efficient and programming friendly algorithm in
calculating the grid intersection especially in 3D problem.

Besides the polyhedron intersection technique, the polyhedron subdivision is another crucial issue in the multi-material
remapping phase. The polyhedron subdivision will be performed after the surface reconstruction in the mixed cells to divide
them into sub-polyhedrons which only contain one material. However, because of the non-convexity of the Lagrangian cells,
one planar material surface may divide a mixed cell into more than two sub-polyhedrons. It is a common circumstance in
3D problems and must be precisely considered for a correct remapping phase. Moreover, if a mixed cell contains more than
two materials, it will be subdivided multiple times. In summary, the non-convex subdivision and multiple subdivision cases
impose difficulty in the existing subdivision algorithms, such as the clipping and capping method [40], and extra effort is
required for an accurate, robust and general polyhedron subdivision algorithm.

In this paper, we firstly present an improved polyhedron subdivision algorithm which could automatically and precisely
handle the convex subdivision, non-convex subdivision and multiple subdivision. Afterwards for the polyhedron intersection
problem, we follow the basic idea from Grandy (1999) [29] and Jia et al. (2013) [34] but propose a different computational
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