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This paper is intended to provide exponentially accurate Galerkin, Petrov–Galerkin and 
pseudo-spectral methods for fractional differential equations on a semi-infinite interval. 
We start our discussion by introducing two new non-classical Lagrange basis functions: 
NLBFs-1 and NLBFs-2 which are based on the two new families of the associated 
Laguerre polynomials: GALFs-1 and GALFs-2 obtained recently by the authors in [28]. 
With respect to the NLBFs-1 and NLBFs-2, two new non-classical interpolants based on 
the associated- Laguerre–Gauss and Laguerre–Gauss–Radau points are introduced and 
then fractional (pseudo-spectral) differentiation (and integration) matrices are derived. 
Convergence and stability of the new interpolants are proved in detail. Several numerical 
examples are considered to demonstrate the validity and applicability of the basis functions 
to approximate fractional derivatives (and integrals) of some functions. Moreover, the 
pseudo-spectral, Galerkin and Petrov–Galerkin methods are successfully applied to solve 
some physical ordinary differential equations of either fractional orders or integer ones. 
Some useful comments from the numerical point of view on Galerkin and Petrov–Galerkin 
methods are listed at the end.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Roughly speaking, the first study on calculus of integrals and derivatives of an arbitrary order, so called fractional calculus, 
dated back to the XVII century where Leibniz and L’Hopital were started to study about the meaning of derivative of order 
0.5. Subsequent study on fractional calculus was made by other researchers such as Euler in 1730, Lagrange in 1772, Laplace 
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in 1812, Lacroix in 1819, Fourier in 1822, Liouville in 1832, Riemann in 1847, Grünwald in 1867, Letnikov in 1868, Hadamard 
in 1892 and Weyl in 1917.

In the past three decades or so, the fractional calculus have found extensive applications in various fields such as physics 
and engineering, quantum, biophysics, mathematics, biology, gravity and etc.

The topic of fractional calculus also has attracted increasing attention for scientist, engineers and researchers because of 
their good performance, due to the nonlocal property, to model some interesting problems and phenomena in engineering 
and science, for instance, diffusion processes [31,32], biophysics [36], viscoelasticity [4,6,12,43], thermodynamics [20], grav-
ity [40], modeling of heat conduction [5], thermal systems [51], biological tissues and control problems [2,22,23,34,45,46]. 
We also refer the interested reader to [14,33,35,37,38,41,44] for detailed information.

Because of the good performance of fractional (derivatives and integrals) operators to model various physical phenomena, 
there has been a surge of interest to provide some useful tools to solve problems containing fractional derivatives (or 
integrals) of Caputo, Riemann–Liouville or Liouville (or Weyl) sense. A comprehensive review of the literatures indicates 
that there have been a lot of developments in both analytical and numerical approaches to adapt these methods for the 
problems that have derivatives or integrals of fractional order.

Generally, as far as we know, due to the fact that most problems containing fractional derivatives either don’t have 
analytical (exact) solutions or the exact solutions have very complex forms, so numerical methods for these problems 
are extensively developed. The numerical methods for such problems can be classified into the local, global and mixed 
local–global categories. Among the existing numerical approaches, spectral methods – the methods based on orthogonal 
systems in both finite and infinite intervals – such as tau, Galerkin, Petrov–Galerkin and pseudo-spectral methods are global 
in character and also have some good features such as: they are usually easy to implement, analyze and perform and 
oftentimes have high accuracy, exponentially accuracy, for the problems with smooth solutions.

To the best knowledge of the authors, until now, researchers have been focused on the use of the classical orthogonal 
systems such as: trigonometric functions for the periodic problems, Jacobi polynomials and their special cases (Legendre, 
Chebyshev and Gegenbauer polynomials) for non-periodic problems, associated Laguerre polynomials for problems on the 
half-line and Hermite polynomials for problems on the whole line. We also note that the classical orthogonal systems are 
as the eigenfunctions of the usual Sturm–Liouville eigenvalue problems:

d

dx

(
p(x)

d

dx
y(x)

)
+ λw(x)y(x) = 0,

subject to the appropriate boundary conditions. Few years ago, many extensions of the classical orthogonal systems have 
been considered (see [47] and references therein). But very recently, a new type of fractional Sturm–Liouville eigenvalue 
problems was introduced by [26,27]. Subsequently, Zayernouri and Karniadakis [54] and the authors of [28] proposed two 
new classes of orthogonal systems in bounded- and unbounded domains, respectively, which were the eigenfunctions of the 
fractional Sturm–Liouville eigenvalue problems (see [9,16,21,24,28,29,54] for some detailed information).

It is worthy to note that due to the nature of these classes of orthogonal systems, they can be represented in the 
form {g(x)Pi(x)}∞i=0 where g(x) is given function and Pi(x) are either Jacobi or associated Laguerre polynomials, they have 
generally non-polynomials natures.

We also point out that with respect to these non-polynomial basis functions, the non-polynomial Lagrange basis func-
tions can be developed in the following form:

LN,r(x) = w(x)

w(xr)
hr(x), (1)

where w(x) is some positive weight function and hr(x) are the Lagrange polynomials associated with the set of collocation 
nodes {xr}, r = 0, 1, . . . , N which is defined by:

hr(x) =
N∏

j=0
j �=r

(
x − x j

xr − x j

)
, r = 0,1, . . . , N. (2)

It is easy to check that LN,r(x) satisfies LN,r(xk) = δrk (the Kronecker delta). However, Weideman [52] introduced the non-
classical form of the Lagrange basis functions (1) in 1999, but unfortunately, only a few papers dealing with the use of 
these basis functions. Zayernouri and Karniadakis in [56] considered a non-classical Lagrange basis function (fractional La-
grange interpolants) and related fractional pseudo-spectral matrices to solve some fractional ordinary and partial differential 
equations in bounded domains (see also [55–60]). For the readers’ convenience, we summarize the goals of this study as 
follows:

• The first goal is to introduce two non-classical Lagrange basis functions of the following forms:

L1
N,r(x) =

(
x

xr

)β

hr(x), β > 0, L2
N,r(x) = e−(x−xr)hr(x),
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