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The quantity of interest (QoI) associated with a solution of a partial differential equation 
(PDE) is not, in general, the solution itself, but a functional of the solution. Dual weighted 
residual (DWR) error estimators are one way of providing an estimate of the error in the 
QoI resulting from the discretisation of the PDE.
This paper aims to provide an estimate of the error in the QoI due to the spatial 
discretisation, where the discretisation scheme being used is the diamond difference (DD) 
method in space and discrete ordinate (SN) method in angle. The QoI are reaction rates 
in detectors and the value of the eigenvalue (Keff) for 1-D fixed source and eigenvalue 
(Keff criticality) neutron transport problems respectively. Local values of the DWR over 
individual cells are used as error indicators for goal-based mesh refinement, which aims 
to give an optimal mesh for a given QoI.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Goal-based dual weighted residual (DWR) methods have already been applied to the field of neutron transport for solvers 
that discretise in space using the finite element method, a method for which the development of DWR error estimates 
is very mature. Despite the increased use of finite element codes in the industry, many full scale production codes use 
the diamond difference (DD) method for solving the discrete ordinate (SN) angular discretisation of the neutron transport 
equation. Examples include the PARTISN code developed at LANL [1], the Denovo SN module in the SCALE code (developed 
at ORNL) [2] and the DOMINO solver that is a part of EDF’s COCAGNE code [3]. Reliable error estimates are desirable to 
ensure that the error in a calculated quantity of interest (QoI) due to spatial discretisation is within a prescribed tolerance. 
The derivation and application of rigorously derived goal-based DWR error estimators has not yet been applied to the 
diamond difference method.

In addition to this, full core pressurised water reactor (PWR) eigenvalue (Keff) problems often require the solution of 
a large number of degrees of freedom (number of unknowns) due to the discretisation of a seven dimensional phase 
space. O(1012) DoF were used recently in the DOMINO solver [3]. Being able to reduce this number by only refining the 
spatial mesh where needed, for a specific QoI, would also be useful in producing computationally efficient solutions. Using 
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goal-based DWR error indicators to guide adaptive mesh refinement (AMR) would be essential in this case since it has 
been shown that AMR using error indicators that aim to reduce the global error in the forward solution can, in certain 
circumstances, fail to yield an accurate answer to the QoI compared to uniform refinement (see [4, p. 783], [5, p. 306], 
[6, p. 3]).

The focus of this paper is the development, implementation and application of goal-based DWR error estimates and 
AMR to the 1-D DD spatial discretisation of the SN discretised neutron transport equation. This is a necessary step before 
extending these methods to multidimensional problems. The estimators are derived for fixed source and eigenvalue (Keff
criticality) problems and the QoI can be linear or non-linear (detector response and the value of Keff respectively).

Many researchers in reactor physics have implemented goal-based error estimation and mesh refinement techniques to 
finite element (FE) approximations of the neutron transport equations. Wang and Ragusa in particular have investigated 
goal-based error estimators and indicators for the spatial error in the diffusion approximation [7], simplified PN (SPN) 
equations (along with Turcksin and Bangerth) [5] and the SN approximation of the neutron transport equation [4], where 
the spatial dimension was discretised using either continuous (for diffusion and SPN) or discontinuous (for SN transport) 
FEs.

Lathouwers applied the DWR goal-based scheme described in a text book by Bangerth and Rannacher [8] to drive h-
adaptation in the discontinuous FE spatial discretisation of the discrete ordinate (SN) angularly discretised transport equation 
(DG-FEM-SN). Both detector functions [9] and eigenvalues [10] were investigated as QoI. The difference between Lathouwer-
s’s work and Wang and Ragusa’s work for SN transport is that Lathouwers calculates the DWR for each angle and integrates 
via quadrature, whereas Wang and Ragusa take the norm of the difference between the approximate solution and a refer-
ence solution (the solution obtained on a refined/higher order mesh) of either the scalar flux or current, then weight this 
by the norm of the same error estimate for the adjoint solution [4].

Goffin et al. [11] also applied a DWR h-adaptive mesh refinement scheme to the transport equations with the eigenvalue 
being the QoI. In this case the angular discretisation used was the spherical harmonics (PN) discretisation with a sub-grid 
scale finite element spatial discretisation. This work was later extended to provide both regular and goal-based angular 
adaptivity, by allowing the order of the spherical harmonic (PN) expansion to be different at each node of the mesh for each 
energy group [12].

An error indicator for spatial refinement of the Arbitrarily High Order Transport Method of the Nodal type (AHOT-N) was 
derived by Duo et al. [13], with the aim of reducing the global L2 error norm. Although duality arguments are used in the 
derivation of the error estimator, a dual solution is not required for its evaluation, since the error in the adjoint solution is 
replaced by bounds to that term in terms of the forward solution. Similar arguments were used by Park et al. for spatial 
and angular adaptivity of the of the FE-PN discretisation of the even parity equations [14]. It is noted that, in both of these 
cases, the goal quantity is limited to be the L2 error, hence the mesh which results may not be optimal for other quantities 
of interest.

Researchers outside of the neutronics field have investigated how to apply goal-based error estimators to methods other 
than FEs [15]. Giles and Pierce lay out the theory for general discretisation schemes noting that the function given by a FE 
solution could be used, or a function could be fit through nodal values of other discretisation schemes [16,17]. Chen et al. 
take a similar approach to presenting a general functional analytic framework for the DWR (goal-based) a posteriori error 
estimation for general discretisation methods, but handle the hyperbolic case more rigorously [18].

Venditti and Darmofal obtain a discrete adjoint equation from the discretised forward equations rather than discretising 
the continuous adjoint equations [19]. Kuzmin et al. also employed the technique of obtaining a DWR method from an 
arbitrary numerical scheme by deriving a finite element interpolant of the resulting values [20,21]. Some attempts have 
been made to reformulate difference schemes as variational problems so that a variation on the DWR scheme used in FE 
can be employed. Collins et al. applied this idea to the Lax–Wendroff finite difference scheme [22].

This paper extends the work of Chen et al. [18] to the system of coupled SN equations that are then discretised by the 
DD method. Chen et al. mention that finite volume (FV) schemes do not require the adjoint solution to be approximated 
in a space that is larger than the forward solution since FV schemes “do not naturally fit into variational forms” [18, 
p. 70]. We show that in the 1D-DD scheme, Galerkin orthogonality applies to the test functions, which are in a different 
space than the approximate forward solution. It is for this reason that Galerkin orthogonality does not apply to the adjoint 
solution calculated on the same mesh as the forward equation (see section 4.4). We also show that, for the DD scheme, 
the discretised adjoint equations must be derived from the continuous adjoint equations, not obtained by transposing the 
discretised forward equations as in the work of Venditti et al. [19].

All goal-based DWR schemes require the solution of both a forward and an adjoint equation. When error estimation is 
coupled with mesh refinement, the computational overhead of calculating the adjoint solution is often more than made up 
for by the saving made by the reduction in the number of DoF in the system. In all Bubnov–Galerkin FE cases the adjoint 
solution must be calculated on a mesh that is more refined than the forward equation due to Galerkin orthogonality [8–10]. 
Some variants of the goal-based method involve calculating the solution on two separate meshes for both the forward and 
adjoint equations [4]. This paper shows that for the DD equations, only one forward and one adjoint solution is required, 
and that in almost all cases analysed here, calculating an adjoint solution on the same mesh as the forward is sufficient to 
give a good error indicator for refinement. In most cases, the accuracy of the overall error estimation is also sufficient in 
this case.
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