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Computational singular perturbation (CSP) is a useful method for analysis, reduction, and 
time integration of stiff ordinary differential equation systems. It has found dominant 
utility, in particular, in chemical reaction systems with a large range of time scales at 
continuum and deterministic level. On the other hand, CSP is not directly applicable 
to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-
negligible role and thus has to be taken into account. In this work we develop a 
novel stochastic computational singular perturbation (SCSP) analysis and time integration 
framework, and associated algorithm, that can be used to not only construct accurately 
and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but 
also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is 
illustrated by an application to a benchmark stochastic differential equation model, and 
numerical experiments are carried out to demonstrate the effectiveness of the construction.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Consider a well-stirred, thermally equilibrated mixture consisting of N chemical species {Si}i=1,...,N , which interact 
through M chemical reaction channels

R j :
N∑

i=1

aij Si −→
N∑

i=1

bij Si, j = 1, . . . , M,

where aij, bij ≥ 0 are the stoichiometric coefficients. Then γi j := bij − aij is the change in the population of Si caused by 
one R j reaction, and γ j = (γ1 j, . . . , γN j)

T is the stoichiometric vector. Denote by xi(t) the concentration of species Si in 
the system at any time t , and x = (x1, x2, . . . , xN )T the state vector. Then reaction rate equations (RREs) describing chemical 
kinetics at the continuum level are a system of ordinary differential equations (ODEs):
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dx

dt
=

M∑
j=1

γ j R j(x) := f (x), (1)

where R j(x), j = 1, . . . , M , is the algebraic reaction rate of progress of the jth reaction.
Detailed chemical reaction mechanisms typically involve large numbers of species and reactions, and exhibit wide ranges 

of time scales [16,35,47,54,64,78]. Mathematically, a chemical reaction system at the continuum level, involving fast and 
slow time scales, results in a system of RREs of the form (1), with stiffness. Generally, stiff ODEs behave somewhat like 
differential-algebraic equations (DAEs), in the sense that their solution dynamics exhibit underlying algebraic manifolds. 
Fast time-scales are “exhausted” quickly, and solutions eventually move on a cascade of lower-dimensional, attracting, and 
invariant “slow manifolds” that characterize the long-term process dynamics. These manifolds are an expression of the 
partial-equilibration of fast processes, being characterized by algebraic relationships among a subset of the species. A differ-
ential “slow” sub-system is useful to approximate the slow evolution of the full system state when the system approaches 
this manifold. Analysis methods to identify these slow manifolds are subjects of intense study, as a means first and fore-
most for understanding underlying system dynamics [23,33,38,50,51,56,75]. Aside from this however, these manifolds can be 
used to either produce simplified/reduced chemical models with requisite dynamical accuracy [55,71,72], or as guideposts 
for projecting the ODEs onto the fast/slow subspaces, thereby providing means for fast explicit time integration of stiff ODE 
systems [73,76].

There is a wide range of methods for analysis and reduction of chemical ODE systems. Reaction flux analysis methods 
rely on elimination of reactions with negligible rates of progress, with no attention to the dynamical landscape of the 
system, often in conjunction of graph models for the reaction network [44,45]. The quasi-steady-state approximation [6,
15,36,41,52,63,70,81], and the partial equilibrium approximation [7,19,36,79] provide alternate means of examining the 
partial equilibrium of fast processes, without explicitly describing underlying manifolds. Both have been shown to have 
significant limitations [20]. Both intrinsic low-dimensional manifold (ILDM) [48], and rate-controlled constrained-equilibrium 
(RCCE) [34,39,58], methods deal explicitly with manifolds, although the former relies on an a priori fixed dimensionality of 
the manifold, while the latter requires a good deal of physical intuition to define the relevant constraints. In contrast, CSP 
is an automated computational procedure for analysis and discovery of low-dimensional manifolds, based on dynamical 
analysis of the underlying ODE system [12,21–24,28,33,36–38,40,46,49–51,55,56,71–76].

CSP is a powerful analysis method for deterministic stiff ODE systems, providing a foundation for reliable model reduction 
and/or explicit time integration. However, chemical reactions are stochastic in principle, and the ODE system (1) is physically 
meaningful only when the system size is at continuum/macroscopic scales, where stochastic effects are averaged out. When 
particle counts are large, e.g., O(103), but not sufficiently so to make the continuum approximation viable, the chemical 
Langevin equations (CLEs), which are essentially the prototype of stochastic differential equations (SDEs), can be used to 
simulate the state dynamics [17].

For stochastic chemical reaction networks based on jump Markov processes, the quasi-steady-state approximation had 
been used to eliminate fast occurring reactions in [8,26,57,59], and the reduction of the chemical master equation had been 
used in [30,31,65,67]. The reduction methods for stochastic chemical reaction networks governed by CLEs, however, are very 
limited to date. For SDEs with fast and slow time scales, the theory of stochastic geometric singular perturbation had been 
used to obtain the existence and an abstract descriptions of the random slow manifold in [4], and the theory of random 
dynamical system had been used to construct a geometric description of the random slow manifold in [29] while the noise 
is of a simplified structure. The extensive theory of random dynamical systems allows abstract analysis of stochastic stable 
manifolds (see, e.g., [1,9,13,14,42,43,60–62]), but is outside the scope of the present work. For linear Itô type of SDEs, model 
reduction methods analogous to balanced truncation in control theory were carried over in [2,3,27,77,82]. Most recently a 
reduction method based on the CLE was developed in [80] to obtain a limit averaging system that approximates the slow 
reactions by averaging out the fast-reacting variables, and another method based on the CLE was developed in [10] to detect 
intrinsic slow variables by using anisotropic diffusion maps.

The main goal of this work is to develop computational algorithms analogous to the CSP, that can be used to numerically 
construct the random slow manifold and approximate the reduced dynamics on the manifold, for stochastic reaction systems 
governed by general fast-slow SDEs. In particular, we first generalize the key idea of deterministic CSP method to the 
stochastic context. The procedure is, however, nontrivial, as both the drift and the diffusion involve different time scales. 
We then develop an explicit time-scale splitting algorithm for stiff SDEs, that has an accuracy comparable to regular explicit 
stiff integrators for SDEs with small step lengths, but at a much lower cost. The rest of this paper is organized as follows. In 
Section 2 we develop the stochastic computational singular perturbation (SCSP) algorithm for stochastic fast-slow SDEs. In 
Section 3 we apply the SCSP to bench mark stochastic Davis–Skodje system and present numerical experiments. To simplify 
the representation, some details of calculations performed in Section 3 are given in the appendix. Some closing remarks are 
given in Section 4.

2. Stochastic computational singular perturbation (SCSP)

Consider a stochastic reaction system of N unknowns denoted by the column stochastic process vector z(t) =
(z1(t), z2(t), . . . , zN (t))T , with the governing stochastic differential equations (or chemical Langevin equations):
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