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We propose two new classes of time integrators for stiff DEs: the implicit exponential 
(IMEXP) and the hybrid exponential methods. In contrast to the existing exponential 
schemes, the new methods offer significant computational advantages when used with 
preconditioners. Any preconditioner can be used with any of these new schemes. This 
leads to a broader applicability of exponential methods. The proof of convergence of these 
integrators and numerical demonstration of their efficiency are presented.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in science and engineering are characterized by the presence of a wide range of spatial and temporal 
scales in the phenomenon under investigations. Complex interactions of numerous processes evolving on different scales 
can cause the differential equations describing the evolution of the system to be stiff. Solving such stiff large systems of 
differential equations numerically is a challenging task. In particular, in many applications large scale systems of ordinary 
differential equations, which often result from spatial discretization of partial differential equations, have to be solved nu-
merically over very long time intervals compared to the fastest processes in the system. Development of an efficient time 
integrator that enables simulation of such systems in a reasonable time requires much effort and care since standard meth-
ods can be too computationally expensive. A custom designed time integrator which exploits the structure of the problem 
and the source of stiffness can bring the necessary computational savings that enable simulation of the problem in the 
parameter regimes of interest. In this paper we address a class of initial value problems which can be written in the form

u′(t) = F (u(t)) = L(u(t)) + N(u(t)), u(t0) = u0, (1.1)

where both differential operators L and N can be stiff. Often L is a linear operator that represents, for instance diffusion. If 
N is not a stiff operator, equations of type (1.1) are usually solved using implicit–explicit (IMEX) integrators. IMEX schemes 
have been widely used in a variety of fields with some of the earlier applications coming from fluid dynamics in conjunction 
with spectral methods [1,2]. An example of one of the most widely used, particularly in the context of large-scale applica-
tions, IMEX schemes, is the second order BDF-type method (we will call it here 2-sBDF) which was proposed in [3], one 
of the first publications where IMEX methods were systematically analyzed and derived. Over the past decades a range of 
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IMEX schemes have been introduced such as, for example, linear multistep [3,4], Runge–Kutta [5] and extrapolated [6] IMEX 
methods. Such schemes have proven to be very efficient for problems such as advection–diffusion equations or reaction–
diffusion equations where advection or reaction are slow and diffusion is occurring on a fast time scale. Diffusion in this 
case is treated implicitly while advection or reaction terms are treated with an explicit method. The IMEX methods are par-
ticularly efficient if a good preconditioner is available to speed up convergence of an iterative method used in the implicit 
solver. Construction of an efficient preconditioner is the topic of extensive research and software development; frequently 
the majority of time spent on development and implementation of an IMEX scheme for a large scale problem goes to cre-
ating a preconditioner [7]. The complexity of a differential operator that has to be preconditioned is directly related to the 
difficulty in constructing an efficient preconditioner. For example, a large number of preconditioners have been developed 
for the Laplacian operator which models linear diffusion process.

While IMEX schemes work well if L is a stiff operator and N is not, in many applications both of these terms introduce 
stiffness. Such problems arise from a wide range of fields, from electrochemistry [8] to combustion [9] and plasma physics 
[10]. A reaction–diffusion system describing chemical kinetic mechanisms involved in ignition of different chemical mixtures 
can involve thousands of reactions occurring over a wide range of time scales comparable to those of the diffusive processes 
in the system [9]. Similar structure can be encountered in models of electrochemical material growth where for certain 
parameter regimes the reactive terms can be as stiff as the diffusive operators in the equations [8]. In magnetohydrodynamic 
(MHD) equations describing the large scale plasma behavior, stiffness arises from the presence of a wide range of waves 
encoded in the complex nonlinear terms of the system [11]. While the IMEX or closely-related semi-implicit integrators 
are typically used for these problems, their performance suffers. The stiffness of the nonlinear operator N which is treated 
explicitly imposes prohibitive stability restrictions on the time step size. Abandoning the IMEX approach in this case and 
using a method that treats N(u(t)) implicitly as well, also poses a computational challenge. The operator N can be very 
complex and development of an efficient preconditioner to enable implicit treatment of this term might be difficult or even 
impossible.

Recently exponential integrators emerged as an efficient alternative to standard time integrators for solving stiff systems 
of equations. It has been shown that exponential time integrators can offer significant computational savings, particularly for 
large scale stiff systems, in comparison to implicit Newton–Krylov methods [12–19]. However, such comparisons are valid 
for problems where no efficient preconditioner is available for the implicit Newton–Krylov integrators. A shortcoming of 
the exponential integrators is that, at present, there are no algorithms that can utilize preconditioners in a way that makes 
them clearly competitive with the preconditioned implicit Newton–Krylov methods. In this paper we present a new class 
of implicit-exponential (IMEXP) methods which can both take advantage of efficient preconditioners developed for given 
operators and improve computational efficiency for problems where both operators L and N in (1.1) are stiff. The idea of 
combining an implicit treatment of operator L and an exponential approach to integrate the term with N was first proposed 
in [20] where a classically accurate second order IMEXP method was constructed. Here we expand this approach to derive 
several types of IMEXP integrators and provide derivation of stiffly accurate schemes along with the convergence theory for 
these methods. While we propose two main classes of integrators – IMEXP Runge–Kutta and hybrid IMEXP schemes – the 
ideas behind these methods can be used to construct many additional schemes that would address particular structure of 
the problem (1.1).

The paper is organized as follows. Section 2 outlines the main ideas behind construction of IMEXP schemes and presents 
the analytical framework that enables us to derive the stiff order conditions and to prove stability and convergence of the 
schemes. Construction and analysis of IMEXP Runge–Kutta methods is presented in Section 3 and development of hybrid 
IMEXP schemes is the focus of Section 4. Section 5 contains numerical experiments that validate theoretical results and 
illustrate computational savings that IMEXP methods can bring compared to IMEX schemes for problems with stiff N .

2. Construction and analytical framework for analysis of the IMEXP methods

We begin the construction of IMEXP methods by considering the general EPIRK framework introduced in [21]. The 
exponential propagation iterative methods of Runge–Kutta type (EPIRK) to solve (1.1) can be written as

Uni = un + αi1ψi1(gi1hn Ai1)hn F (un) + hn

i−1∑
j=2

αi jψi j(gijhn Aij)Dnj, i = 2, . . . , s,

un+1 = un + β1ψs+1,1(gs+1,1hn As+1,1)hn F (un) + hn

s∑
j=2

β jψs+1 j(gs+1, jhn As+1, j)Dn,s+1,

(2.1)

where un is an approximation to the solution of (1.1) at time tn = t0 +∑n
i=1 hi and vectors Dnj typically depend on the stage 

values Uni . As explained in [21,20,22], different choices for functions ψi j , matrices Aij and vectors Dnj result in different 
classes of EPIRK methods. To construct IMEXP methods we can use the flexibility of EPIRK framework and choose ψi j , Aij
and Dnj to address the structure of the problem (1.1). Namely, we construct methods of two types – IMEXP Runge–Kutta and 
hybrid IMEXP schemes. The main idea behind both classes of methods is to choose some of the functions ψi j to be rational 
functions, similar to implicit or IMEX methods. The remaining ψi j are then set as linear combination of the exponential-like 
functions ϕk(z) defined by
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