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In this paper we consider a kinetic-fluid model for disperse two-phase flows with 
uncertainty. We propose a stochastic asymptotic-preserving (s-AP) scheme in the general-
ized polynomial chaos stochastic Galerkin (gPC-sG) framework, which allows the efficient 
computation of the problem in both kinetic and hydrodynamic regimes. The s-AP property 
is proved by deriving the equilibrium of the gPC version of the Fokker–Planck operator. The 
coefficient matrices that arise in a Helmholtz equation and a Poisson equation, essential 
ingredients of the algorithms, are proved to be positive definite under reasonable and mild 
assumptions. The computation of the gPC version of a translation operator that arises in 
the inversion of the Fokker–Planck operator is accelerated by a spectrally accurate splitting 
method. Numerical examples illustrate the s-AP property and the efficiency of the gPC-sG 
method in various asymptotic regimes.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are concerned with kinetic-fluid models for disperse two-phase flows. Such models arise naturally in 
the study of mixture of a continuum of fluid, such as gas and liquids, and small particles, such as droplets and suspension of 
solids. The fluid phase is described by hydrodynamic equations, such as the Euler equations or the Navier–Stokes equations, 
while the particle phase is described by a kinetic equation. The application of kinetic-fluid models includes the dynamic of 
sprays [7,25,17], granular flows [1,9,6], and combustion theory [10,26], to name a few.

We focus on the model where the fluid phase has small compressibility and nonzero viscosity, thus modeled by the 
incompressible Navier–Stokes (NS) equations. The particles are assumed to be subjected to a drag force obeying the Stokes 
Law, i.e., proportional to the relative velocity of the particle and the fluid. Furthermore, the particles are subject to an exter-
nal force field (gravity, for example) and Brownian motions. For simplicity we take the physical space to be 2-dimensional. 
The model is given by
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∂t f + v · ∇x f − ∇x� · ∇v f = 1

ε
Lu f ,

∂t u + ∇x · (u ⊗ u) + ∇x p − 1

Re
�xu = 1

ε
κ

∫
(v − u) f dv,

∇x · u = 0,

(1.1)

where Lu f is the Fokker–Planck (FP) operator

Lu f = ∇v · ((v − u) f + ∇v f ). (1.2)

x = (x1, x2) ∈ � ⊂ R
2 is the space variable, and v = (v1, v2) ∈ R

2 is the velocity variable. f = f (t, x, v) is the density 
function of the particles. u = u(t, x) = (u(1)(t, x), u(2)(t, x)) is the velocity field of the fluid. � = �(x) is an external force 
field. The first equation describes the motion of particles. The two terms in the FP operator comes from the drag force from 
the fluid and the effect of Brownian motions, respectively. The ∇x� term is the effect of the external force field on the 
particles. The second and third equations are the standard Navier–Stokes equations for the fluid, with the right-hand-side 
term describing the force coming from the particle. κ > 0 is the coupling constant depending on the strength of interaction 
between the particles and the fluid, and Re is the Reynolds number. ε is the Knudsen number given by ε = 2ρP a2

9μ , where μ
is the dynamic viscosity of the fluid, a the typical radius of the particles, and ρP the density of the particles.

The hydrodynamic limit of this model was first investigated by Goudon et al. [11,12] in two different regimes. We follow 
the scaling given in [12], which is called the fine particle regime.

In [13] Goudon et al. proposed an Asymptotic-Preserving (AP) [18] scheme for the two-phase flow system (1.1), which are 
efficient for both the cases of small and large ε . The main idea of this work is to incorporate the evolution of the moments 
of the particles into the projection method [5,27] for the NS system. The possibly stiff (when ε is small) FP operator is 
treated fully implicitly, with a well-balanced spatial discretization proposed by Jin and Yan [19]. The second order time 
discretization is given by the backward difference.

The paper [13] only concerns with the case where all the physical quantities and parameters are deterministic. However, 
there are many sources of uncertainties in this model. For example, the initial data of f and u come from experimental 
measurements, hence may have measurement errors. If one adopts the Maxwellian boundary condition for f with the 
accommodation coefficient, or the no-slip boundary condition for u against a wall with a nonzero velocity, then these 
boundary data will contain parameters, which come from direct measurements or matching with experimental data. Such 
parameters will also give rise to uncertainties. Furthermore, the parameters ε, κ, Re and the external field � come from 
measurements and have uncertainties. To provide reliable predictions and a guidance to improve the model, it is imperative 
to incorporate these uncertainties into the system, and quantify these uncertainties by numerically solving the resulting 
system with uncertain inputs.

In the last two decades, a large variety of numerical methods have been developed in the field of uncertainty quan-
tification (UQ) [8,16,22,28,29]. Among these methods, the most popular ones are Monte-Carlo methods [23], stochastic 
collocation methods [2,4,24,30] and stochastic Galerkin methods [4,3]. The idea of Monte-Carlo methods is to sample ran-
domly in the random space, which results in halfth order convergence. Stochastic collocation methods use sample points on 
a well-designed grid, and one can evaluate the statistical moments by numerical quadratures. Stochastic Galerkin methods 
start from an orthonormal basis in the random space, and approximate functions by truncated polynomial chaos expansions. 
By the Galerkin projection, a deterministic system of the expansion coefficients can be obtained. While Monte-Carlo meth-
ods have advantage in very high dimensional random spaces, the other two methods can achieve spectral accuracy if one 
adopts the generalized polynomial chaos (gPC) basis [31], which is a great advantage if the dimension of the random space 
is not too high. In this paper we focus on low dimensional random spaces, and adopt the stochastic Galerkin approach.

To effectively handle possible multiscales, where ε can be small or large, the AP approach has been proved to be very 
effective for (deterministic) kinetic problems (see [18,20]). For kinetic problems with uncertainties, the gPC based stochastic 
Galerkin (gPC-sG) method introduces a deterministic system which is basically a vector version of the deterministic counter-
parts, thus allowing one to utilize the deterministic AP framework to handle uncertain problems, in the sense of stochastic 
Asymptotic-Preserving (s-AP) [21]. A scheme is s-AP if the stochastic Galerkin (sG) method for the uncertain kinetic equation 
approaches to the sG method of the limiting (macroscopic) hydrodynamic equations as ε → 0. In this paper we adopt this 
approach, and propose an s-AP scheme for the kinetic-fluid model with uncertainties. In order to simplify the presentation 
and emphasize the main idea, we only consider the case of uncertain initial data. Uncertainties from other terms can be 
treated similarly in the sG framework, see [33].

Compared with the deterministic problem in [13], there are several new difficulties to overcome. First, the formal proof 
of the s-AP property is less obvious, due to the vector form of the scheme. Our proof is based on the observation that 
the gPC version of the FP operator �L is the deterministic FP operator L0 conjugated by a gPC version of the translation 
operator �T (see Section 3.3 for details). This observation gives rise to the equilibrium of �L, and thus the hydrodynamic 
limit of the gPC system follows as ε → 0, which allows us to justify the s-AP property. Second, one needs to show that the 
resulted Helmholtz and Poisson systems, essential ingredients of the s-AP schemes, are well-defined systems. Indeed these 
properties, which are based on the positive-definiteness of the coefficient matrices in these systems, will be proven under 
reasonable and mild assumptions. Thirdly, to treat �L implicitly, which is needed for good numerical stability property, it is 
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