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We present a framework using the Quantized Tensor Train (QTT) decomposition to 
accurately and efficiently solve volume and boundary integral equations in three dimen-
sions. We describe how the QTT decomposition can be used as a hierarchical compression 
and inversion scheme for matrices arising from the discretization of integral equations. 
For a broad range of problems, computational and storage costs of the inversion scheme 
are extremely modest O (log N) and once the inverse is computed, it can be applied in 
O (N log N).
We analyze the QTT ranks for hierarchically low rank matrices and discuss its relationship 
to commonly used hierarchical compression techniques such as FMM and HSS. We prove 
that the QTT ranks are bounded for translation-invariant systems and argue that this 
behavior extends to non-translation invariant volume and boundary integrals.
For volume integrals, the QTT decomposition provides an efficient direct solver requiring 
significantly less memory compared to other fast direct solvers. We present results 
demonstrating the remarkable performance of the QTT-based solver when applied to both 
translation and non-translation invariant volume integrals in 3D.
For boundary integral equations, we demonstrate that using a QTT decomposition to 
construct preconditioners for a Krylov subspace method leads to an efficient and robust 
solver with a small memory footprint. We test the QTT preconditioners in the iterative 
solution of an exterior elliptic boundary value problem (Laplace) formulated as a boundary 
integral equation in complex, multiply connected geometries.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We aim to efficiently and accurately solve equations of the form

aσ(x) +
∫
�

b(x)K (x, y)c(y)σ (y)d�y = f (x), for all x ∈ �, (IE)

where � is a domain in R3 (either a boundary or a volume). When a �= 0, the integral equation is Fredholm of the second 
kind, which is the case for all equations presented in this work. A large class of physics problems formulated as PDEs may be 
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cast in this equivalent form. K (x, y) for these type of problems is a kernel function derived from the fundamental solution 
of the PDE. The advantages of integral equation formulations include reducing dimension of the problem from three to two 
and improved conditioning of the discretization.

The kernel function K (x, y) is typically singular as x approaches y but is smooth otherwise. For the purposes of this 
paper, we also assume it is not highly oscillatory.

A discretization of Eq. (IE) produces a linear system of equations

Aσ = f, (LS)

where A is a dense N × N matrix. Krylov subspace methods such as GMRES [71] coupled with the rapid evaluation algorithms 
such as FMM [34] are widely used to solve this system of equations. However, the performance of the iterative solver is 
directly affected by the eigenspectrum of Eq. (IE).

The eigenspectrum of the system, while typically independent of the resolution of the discretization, can vary greatly, 
depending on the geometric complexity of � and the kernel K in particular. When the spectrum is clustered away from 
zero, the system is solved in a few iteration using a suitable iterative method. However, this is not the case for a number of 
problems of interest (e.g., when different parts of the boundary approach each other). Such problems may either be solved 
by constructing an effective preconditioner for the iterative solver or by using direct solvers, in which the system is solved 
in a fixed time independent of the distribution of the spectrum.

There have been a number of efforts to develop robust, fast direct solvers with linear complexity for systems given in 
Eq. (LS). When � is a contour in the plane, extremely efficient O (N) algorithms such as [55] exist. These algorithms may be 
extended to volumes in 2D and surfaces in 3D, producing direct solvers with complexity O

(
N3/2

)
[25,43,24]. More recently, 

approaches that aim to extend linear complexity to Hierarchically Semi-Separable (HSS) matrices have been developed [18,
42]. Furthermore, a general inverse algorithm has been proposed for FMM matrices [2].

For 2D problems, these types of methods have excellent performance and remain practical even at high target accura-
cies, e.g., 10−10. However, for volume or boundary integral equations in 3D, especially in complex geometries, algorithmic 
constants in the complexity of these methods grow considerably as a function of accuracy. In particular, the compressed 
form of the inverse typically requires a very large amount of storage per degree of freedom, limiting the range of practical 
target accuracies or problem sizes that one can solve. This also precludes efficient parallel implementation, due to the need 
to store and communicate large amounts of data.

Basic iterative solvers (requiring only matrix–vector multiplication) and direct solvers, represent two extremes of the 
spectrum of preconditioned iterative solvers, as a direct solver can be viewed as a preconditioned solver with a perfect pre-
conditioner requiring one iteration to converge. These also represent two extremes in the tradeoff between memory and 
time spent for computing the preconditioner as well as the cost of each solve. A direct solver requires a lot of memory and 
precomputation time for the inverse matrix, but solving a system for a specific right-hand side is typically very fast. On the 
other extreme, a non-preconditioned iterative solver requires only a matrix–vector multiplication function, either requiring 
no precomputation, or compression of the matrix (but not computing its inverse). However, each solve in this case may 
require a large number of iterations.

Varying the accuracy of the approximate inverse preconditioner leads to intermediate solvers, with reduced storage and 
time required for precomputation, but increased time needed for solves. By varying this accuracy, we can find a “sweet 
spot” for a particular type of problem and let the practitioner strike a reasonable trade-off between precomputation time 
and solve time, within the available memory budget.

1.1. Contributions and outline

We present an effective and memory-efficient preconditioned solver for Eq. (LS) based on the quantized tensor train 
decomposition (QTT) [64,50]. The QTT decomposition allows for the compact representation and fast arithmetic of structured 
matrices by recasting them in tensor form.

In this work, we frame this process in the context of hierarchical compression and inversion for matrix A. We show that 
for a range of target accuracies, QTT decomposition achieves significantly higher compression by finding a common basis for 
all interactions at a given level of the hierarchy. We argue this makes it a natural fit for the solution of integral equations, 
and discuss how, for certain problems, it can achieve superior performance versus commonly used hierarchical compression 
techniques such as FMM and variants of H-matrices.

We prove rank bounds for the QTT ranks of A for translation-invariant systems, as well as for a family of non-translation 
invariant systems obtained from volume integral equations in Section 3, and provide evidence that this behavior extends 
to boundary integrals in complex geometries. In our experiments in Section 5, we find that the inverse A−1 is also highly 
compressible, displaying comparable rank behavior to that of A in all cases considered.

In our presentation of the QTT inversion process in Section 4, we contribute novel strategies to precondition the QTT 
inversion algorithms, representing the inverse as a product of matrix factors in the QTT form to achieve faster computation.

Finally, we perform an extensive series of numerical experiments to evaluate the performance and experimental scaling 
of the QTT approach for volume and boundary integral equations of interest. In both instances, we confirm key features of 
QTT that distinguish it from existing fast direct solver techniques:
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