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We present an efficient numerical scheme for the conservative Allen–Cahn (CAC) equation 
on various surfaces embedded in a narrow band domain in the three-dimensional space. 
We apply a quasi-Neumann boundary condition on the narrow band domain boundary 
using the closest point method. This boundary treatment allows us to use the standard 
Cartesian Laplacian operator instead of the Laplace–Beltrami operator. We apply a hybrid 
operator splitting method for solving the CAC equation. First, we use an explicit Euler 
method to solve the diffusion term. Second, we solve the nonlinear term by using a closed-
form solution. Third, we apply a space–time-dependent Lagrange multiplier to conserve 
the total quantity. The overall scheme is explicit in time and does not need iterative 
steps; therefore, it is fast. A series of numerical experiments demonstrate the accuracy 
and efficiency of the proposed hybrid scheme.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Allen–Cahn (AC) equation is a second-order nonlinear parabolic partial differential equation, which was originally 
proposed by Allen and Cahn [1] to describe the phase separation in binary alloys. The classical AC equation is

∂φ

∂t
(x, t) = −M

(
F ′(φ(x, t))

ε2
− �φ(x, t)

)
. (1)

The AC equation has been used to model many phenomena such as crystal growth [2,3], image inpainting [4,5], image 
segmentation [6,7], and tumor growth [8] on flat surfaces. Moreover, it has been studied on non-flat surfaces [9]. Although 
the conservative Allen–Cahn (CAC) equation has been solved and studied on flat surfaces [10–13], to the best of authors’ 
knowledge, there is no research work that has attempted to solve this equation on non-flat surfaces.

Therefore, the main purpose of this study is to develop a fast and computationally efficient finite difference method 
for the CAC equation on non-flat surfaces in three-dimensional space. The problem for partial differential equations on the 
surfaces has been studied in various fields such as image processing [14,15] and biological modeling [15–17]. Therefore, 
solving the CAC equation on surfaces is an important issues, both in the geometrical and numerical sense. We employ 
a hybrid explicit numerical method, which is based on an operator splitting method and we solve the resulting discrete 
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Fig. 1. (a) Bunny surface, (b) slice data of the band domain, (c) part of the bunny’s ear in (b), definition of the Laplacian using the points on the shaded 
region, (d) closest points cp(x1) and cp(x2) for boundary points x1 and x2.

equations on a narrow band domain. We use the idea of the closest point method [18] to define the boundary condition. 
The numerical results demonstrated that the proposed algorithm is accurate and efficient.

The rest of the paper is structured as follows. In Section 2, we describe the governing equation, i.e., the CAC equation on 
a narrow band domain. In Section 3, we provide the numerical scheme and algorithm. We present the various numerical 
results in Section 4. Finally, in Section 5, we provide the conclusion.

2. The conservative Allen–Cahn equation

In this section, we describe the CAC equation [13]

∂φ

∂t
(x, t) = − F ′(φ(x, t))

ε2
+ �φ(x, t) + β

√
F (φ(x, t)), (2)

where φ(x, t) is the order parameter, 
√

F (φ) = 0.5|φ2 − 1|, ε is the thickness of the transition layer, and β is the Lagrange 
multiplier used for conserving the total mass. Let S be a smooth surface in R3 and �δ be a neighborhood of S which is 
defined as �δ = {y|x ∈ S, y = x +θn(x) for |θ | < δ} where n is a unit normal vector on surface S and δ is a positive constant.

We describe how to find the boundary points by using the closest point method. In the numerical simulation section, 
we will show a test that solves the CAC equation on the bunny. We will explain how to define the Laplacian and boundary 
condition by using that example. To help the reader understand the idea, we will explain how the algorithm works in 
two-dimensional space. Fig. 1(a) shows the surface of the bunny, and we define surface S , boundary ∂�δ , band width 2δ, 
and band domain �δ , which is denoted by the shaded region in Fig. 1(b). When we calculate �hφn

i jk , the boundary values 
at the empty circles shown in Fig. 1(c) are needed. For each point x ∈ ∂�δ , using a trilinear interpolation, we define the 
closest point function cp : ∂�δ → S , which assigns the value of the closest point cp(x, t), as shown in Fig. 1(d). Therefore, 
we define the boundary condition as

φ(x, t) = φ(cp(x), t) on ∂�δ. (3)

In the next section, we describe how to solve the CAC equation on the narrow band domain.

3. Numerical solution

In this section, we represent the numerical schemes for the CAC equation on the narrow band domain, �δ . The CAC 
equation is discretized on the three-dimensional domain � = (a, b) × (c, d) × (e, f ). The uniform spatial step size is h = (b −
a)/Nx = (d − c)/N y = ( f − e)/Nz , where Nx, N y , and Nz are the number of cells in the x-, y-, and z-directions, respectively. 
Discrete domain �h is defined as �h = {xi jk = (xi, y j, zk) = (a + hi, c + hj, e + hk)

∣∣0 ≤ i ≤ Nx, 0 ≤ j ≤ N y, 0 ≤ k ≤ Nz}, and 
�h

δ = {xi jk
∣∣|ψi jk(xi jk)| < δ} is the discrete narrow band domain, where ψ is a signed distance function. The narrow band 

domain must contain the stencil as in Fig. 1(c); therefore, we should take δ ≥ √
3h. Let the boundary points be defined as 

∂�h
δ = {xi jk

∣∣Ii jk|∇h Ii jk| 
= 0}, where ∇h Ii jk = (Ii+1, jk − Ii−1, jk, Ii, j+1,k − Ii, j−1,k, Ii j,k+1 − Ii j,k−1)/(2h). Here, Ii jk = 0 if xi jk ∈ �h
δ ; 

otherwise, Ii jk = 1.
Let φn

i jk be the approximations of φ(xi jk, n�t), where �t = T /Nt is the time step, T is the final time, and Nt is the total 

number of time steps. In �h
δ , we define a discrete L2-norm error as ‖φ‖L2 =

√
1

#�h
δ

∑
xi jk∈�h

δ
φ2

i jk , where #�h
δ is the number 

of points on the band. We consider the discretization of the CAC Eq. (2). First, we solve the AC equation which is obtained 
by using an operator splitting method. We solve the diffusion term on the narrow band domain �h

δ by using an explicit 
Euler method with the boundary condition φn

i jk = φn(cp(xi jk)) on ∂�h
δ :

φ∗
i jk − φn

i jk

�t
= �hφ

n
i jk. (4)

Here, we use the standard Laplacian �hφi jk = (φi+1, jk + φi−1, jk + φi, j+1,k + φi, j−1,k + φi j,k+1 + φi j,k−1 − 6φi jk)/h2.
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