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Abstract

A stable and high-order accurate embedded boundary method for first order hyperbolic equations is derived.
Where the grid-boundaries and the physical boundaries do not coincide, high order interpolation is used. The
boundary stencils are based on a summation-by-parts framework, and the boundary conditions are imposed
by the SAT penalty method, which guarantees linear stability for one-dimensional problems. Second-,
fourth-, and sixth-order finite difference schemes are considered. The resulting schemes are fully explicit.
Accuracy and numerical stability of the proposed schemes are demonstrated for both linear and nonlinear
hyperbolic systems in one and two spatial dimensions.
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1. Introduction

Hyperbolic initial-boundary value problems (IBVP) appear in many fields of science, such as acoustics,
electromagnetics, and seismology. When solving hyperbolic IBVP numerically, finite difference methods
have proven efficient in the sense that they approximate hyperbolic wave propagation accurately at low
computational cost. Furthermore, Kreiss and Oliger [13] showed that, when the solution is smooth, high-
order methods outperform low-order ones by requiring far fewer degrees of freedom for a given error tolerance.
Hence, we shall strive to use a high-order finite difference method (HOFDM). One disadvantage with this
approach is that with increased order of accuracy, it typically becomes more difficult to impose boundary
conditions (BC) in a stable manner. Another obstacle is that HOFDM require high-quality structured
grids, which may in fact be infeasible to generate in complex geometries. In such cases, one often sacrifices
efficiency for flexibility by employing methods that support unstructured meshes, such as finite volume or
finite element methods. An alternative approach, which we shall pursue in this paper, is to embed (or
immerse) the complex geometry in a Cartesian grid, which renders the grid generation process trivial.

Embedding or immersing complex geometries in Cartesian grids is a practical technique that has gained
interest during the last two decades. In the literature, different embedded boundary (EB) methods have
been applied to many different PDEs. The immersed boundary (IB) method [33, 19] is the first application of
Cartesian grid methods to CFD. A second order accurate IB method for turbulent flows and multi-material
heat transfer problems is presented in [11, 12], where the IB method is combined with local mesh refinement.
The interface between different materials can also be regarded as an immersed boundary; this technique is
usually referred to as the immersed interface method [21, 20, 23, 39].

Second-order accurate EB techniques for Laplace’s equation subject to Dirichlet and Neumann boundary
conditions can be found in for example [6]. Several second-, fourth-, and even higher-order accurate schemes
have been derived to handle embedded discontinuous coefficients in the one-dimensional case (see for example
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