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We present a fast computational framework for the inverse medium problem in scattering, 
i.e. we look at discretization, reconstruction and numerical performance. The Helmholtz 
equation in two and three dimensions is used as a physical model of scattering 
including point sources and plane waves as incident fields as well as near and far field 
measurements. For the reconstruction of the medium, we set up a rapid variational 
regularization scheme and indicate favorable choices of the various parameters. The 
underlying paradigm is, roughly speaking, to minimize the discrepancy between the 
reconstruction and measured data while, at the same time, taking into account various 
structural a-priori information via suitable penalty terms. In particular, the involved penalty 
terms are designed to promote information expected in real-world environments. To this 
end, a combination of sparsity promoting terms, total variation, and physical bounds of 
the inhomogeneous medium, e.g. positivity constraints, is employed in the regularization 
penalty. A primal-dual algorithm is used to solve the minimization problem related to the 
variational regularization. The computational feasibility, performance and efficiency of the 
proposed approach is demonstrated for synthetic as well as experimentally measured data.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Inverse medium scattering problems seek to identify the refractive index of a penetrable medium from measurements 
of waves scattered from that medium. In acoustics, such parameter identification problems for instance are crucial for 
various non-destructive testing procedures based on ultrasound measurements. However, the numerical treatment of inverse 
medium scattering problems is challenging due to their intrinsic non-linearity and ill-posedness. Further, any inversion 
algorithm in addition needs to cope with huge system sizes arising after discretization. This is especially true for problems 
modeling all three space dimensions. In this paper, we propose a complete computational framework for inverse medium 
scattering at fixed frequency. The employed methods allow to take into account a-priori known structural properties of the 
searched-for refractive index in the variational reconstruction step via suitable penalty terms. Such properties for instance 
include (physical) bounds for the values of the refractive index, its sparsity in an a-priori known basis, or the presence of 
sharp edges.
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Numerous algorithms solving inverse medium scattering problems are already established, all having specific advantages 
and disadvantages. A first class of algorithms (including ours) exploits Fréchet differentiability of the operator mapping the 
refractive index to the measured data. This allows to set up one of the various existing variants of regularized Newton-like 
inversion schemes that numerically show local convergence, see [6,14]. This class includes popular techniques as Kleinman 
and van den Berg’s CG-based modified gradient method or Gutman and Klibanov’s simplified gradient method. A second 
class of algorithms implements constructive uniqueness proofs for (features of) the refractive index, see, e.g. [9], which 
also includes so-called quantitative methods that merely identify spatial sets where the refractive index differs from its 
background values, see [6,15,16]. Finally, a third class of algorithms relies on a high or low frequency assumption to linearize 
the inversion problem in the corresponding asymptotic regime (e.g., physical optics approximation or Born approximation). 
This allows to use particular linear inversion methods for inverse medium scattering problems but remains of limited use if 
the wavelength is in the range of the size of the scattering object.

Whenever an inversion algorithm for the inverse medium scattering problem relies on multi-static data, see Fig. 1 below, 
then it is backed up by uniqueness results for the searched-for refractive index, both in two and three dimensions, see [12,5].

Our minimization-based reconstruction approach is known in inverse problems as (non-linear) Tikhonov regularization. 
For given near or far field measurements, we rely on the non-linear forward operator mapping the refractive index to the 
field measurements. As the refractive index n equals one outside the scatterer, we actually prefer to solve for the contrast 
q := n2 − 1 of compact support, such that the forward operator F maps q to the measurements. Naturally, we tackle the 
inversion problem by seeking a contrast q such that F(q) matches measured data Fmeas, i.e. ‖F(q) − Fmeas‖ is small in some 
appropriate norm. To cope with ill-posedness (i.e., instability) of the inversion problem, this functional must be stabilized 
by adding a suitable penalty term, see [10]. Considering sparse refractive indices with respect to a pixel or wavelet basis, 
it is by now well-known that traditionally choosing the square of a Hilbert space norm yields worse results than choosing 
�p-norms for p ∈ [1, 2) close to one, see [19] for a resulting algorithm based on soft-shrinkage iteration. We show in this 
paper that including further a-priori features of the refractive index further improves the reconstruction quality. This allows 
for instance to join total variation based with sparsity-promoting regularization. However, coping with additional penalties 
requires to use a more general minimization algorithm than the soft-shrinkage iteration used in [19]. To this end, we rely on 
a so-called primal-dual algorithm due to Pock, Bischof, Cremers and Chambolle, see [24,7], which offers enough flexibility 
for our setting while at the same time improving computation times considerably when compared with soft-shrinkage 
iterations. This algorithm is hence in particular applicable for three-dimensional inverse scattering problems; generally, its 
extensions to Banach spaces has been considered in [13], which also indicates numerical examples for one-dimensional 
deconvolution and two-dimensional phase reconstruction.

For any inverse problem dealing with parameter identification in differential equations, efficient inversion algorithms rely 
on an efficient solver for the underlying differential equation. For our setting, we describe solutions to the time-harmonic 
(direct) scattering problem via the so-called Lippmann–Schwinger equation. This volumetric integral equation can be ef-
ficiently discretized using a Fourier-based collocation scheme, which, in its original version, is due to Vainikko [29]. The 
resulting numerical scheme avoids several disadvantages of standard discretizations as, e.g., finite element or finite differ-
ence schemes: Numerical integration of singular functions or of the contrast is avoided, resulting solutions automatically 
satisfy the radiation condition, and the fast Fourier transform allows for fast matrix-vector multiplication. The resulting 
dense system matrix hence needs not to be set up, as the arising discrete system can be efficiently tackled by iterative 
techniques (we rely on the GMRES algorithm).

Of course, the inversion algorithm we propose depends on various parameters as, e.g., regularization and stopping pa-
rameters. All convergence theory for noise level tending to zero of such an iterative, Newton-like algorithm seems to require 
non-linearity conditions that are not yet verified. There is hence no parameter choice rule that theoretically guarantees 
convergence. Practically, we suggest suitable parameters that we determined in exhaustive numerical experiments.

We test feasibility and performance of our inversion algorithm via reconstructions from synthetic data in two and three 
dimensions as well as from experimentally measured data in two dimensions from Institute Fresnel, see [4]. Although the 
run-times should be taken with a pinch of salt because our computations rely on MATLAB, they give an impression of 
the performance of our algorithm. All numerical examples contained in this paper are computed by the MATLAB toolbox 
that is available on demand and contains both the mentioned inversion algorithms (primal-dual algorithm, soft-shrinkage 
iteration), as well as the mentioned integral equation solver for the direct scattering problem.

The rest of this paper is structured as follows: In Section 2 we give a brief introduction to direct and inverse scattering 
from inhomogeneous media. We tackle the discretization of the forward problem in Section 3 and the reconstruction in 
Section 4, where we develop a suitable penalty term, show explicitly how to apply the mentioned primal-dual algorithm, 
and introduce suitable stopping rules. We test our inversion algorithm with synthetic data in Section 5 in two and three 
dimensions. In Section 6 we apply the inversion algorithm to experimentally measured data.

Notation: We denote standard Lebesgue spaces with integrable pth power on a domain D by L p(D). The corresponding 
Sobolev spaces are W s,p(D) for s ≥ 0 and p ∈ [1, ∞]; for p = 2, we abbreviate H s(D) = W s,2(D). The notation of inner 
products is 〈·, ·〉. In Section 3 vector and array quantities are denoted by an underlined symbol. To select an element in such 
quantities we employ a subindex or, where it is beneficial for readability, a bracket, i.e. q

j
and q( j) both denote the jth 

element of q. Sometimes we use the notation f · g to point out the pointwise multiplication of functions. The notation ( f ·)
is used to denote the operator of pointwise multiplication (with a function f ). In the same vein, f 	 g and ( f 	 ) are used 
for element-wise multiplication of vector, matrix or array quantities as well as the related operator. Of course, for vectors 
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