
Journal of Computational Physics 339 (2017) 412–431

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Superconvergent second order Cartesian method for solving 

free boundary problem for invadopodia formation

Olivier Gallinato, Clair Poignard ∗

Team MONC, INRIA Bordeaux-Sud-Ouest, Institut de Mathématiques de Bordeaux, CNRS UMR 5251 & Université de Bordeaux, 351 cours de la 
Libération, 33405 Talence Cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 September 2016
Received in revised form 14 February 2017
Accepted 5 March 2017
Available online 18 March 2017

Keywords:
Finite differences on Cartesian grids
Superconvergence
Interface conditions
Free boundary problem

In this paper, we present a superconvergent second order Cartesian method to solve a 
free boundary problem with two harmonic phases coupled through the moving interface. 
The model recently proposed by the authors and colleagues describes the formation of 
cell protrusions. The moving interface is described by a level set function and is advected 
at the velocity given by the gradient of the inner phase. The finite differences method 
proposed in this paper consists of a new stabilized ghost fluid method and second order 
discretizations for the Laplace operator with the boundary conditions (Dirichlet, Neumann 
or Robin conditions). Interestingly, the method to solve the harmonic subproblems is 
superconvergent on two levels, in the sense that the first and second order derivatives 
of the numerical solutions are obtained with the second order of accuracy, similarly to the 
solution itself. We exhibit numerical criteria on the data accuracy to get such properties 
and numerical simulations corroborate these criteria. In addition to these properties, we 
propose an appropriate extension of the velocity of the level-set to avoid any loss of 
consistency, and to obtain the second order of accuracy of the complete free boundary 
problem. Interestingly, we highlight the transmission of the superconvergent properties for 
the static subproblems and their preservation by the dynamical scheme. Our method is 
also well suited for quasistatic Hele–Shaw-like or Muskat-like problems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Early-stage carcinoma are mostly confined to the epithelium, which is separated from the underlying tissue by a base-
ment membrane composed of dense fibers of extracellular matrix (ECM). In order to cross this tight barrier, metastatic 
cells use a complex internal machinery, named invadopodia, which lies on the actin polymerization and that leads to the 
formation of proteolytic, protrusive and very localized subcellular structures. Invadopodia are elongated shapes, which are 
formed during cell invasion and mesenchymal migration. This phenomenon is the crucial and initiating point in the metas-
tasic process, which is the major cause of death from cancer. The authors and colleagues proposed recently a free boundary 
problem to model invadopodia and more generally for cell protrusion formation [16]. In this paper, we present a super-
convergent second order method on Cartesian grid to solve this quite complex free boundary value problem. Our finite 
difference method is based on the derivation of appropriate superconvergent schemes: wide-stencils are proposed to reach 
specific superconvergence properties for the solutions of the Poisson problem. As a result, the global method leads to the 
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Fig. 1. Schematic diagram of the molecular interactions involved in our model and geometrical settings. The cell Oi
t is imbedded in the bath Oe

t . The whole 
domain � does not depend on the time variable. It is defined by � =Oe

t ∪Oi
t .

second-order accuracy of the moving interface, its normal vector and even its curvature. The accuracy on the curvature 
will be of major interest in further study for the use of interface regularization techniques in order to model subsequent 
phenomena involved in cell migration, as myosin-dependent protrusion retraction, for instance.

The purpose of the study is to simulate accurately cell protrusion formation, however the domain of applications can be 
extended to free-boundary problems arising from physics or biology such as Hele–Shaw, Muskat or quasistatic two-phase 
Stefan like problems.

1.1. Free-boundary problem for invadopodium formation

The invadopodium process relies on a coupled dynamics between the outer and the inner of the cell. Let us present 
briefly the new model of the phenomenon detailed in [16]. Specific enzymes (MT1-MMPs) produced by the cell membrane 
degrade the extracellular matrix (ECM), producing ligands that diffuse and bind to membrane receptors. In response, cell 
generates a signal which diffuses inside the cell and, which leads to actin polymerization: rigid filaments are polymerized, 
oriented towards the location of the detected ligand. The force exerted by the filaments on the membrane generates a 
protrusion which grows at the velocity of the filament polymerization. The scheme of the process is given by Fig. 1(a), 
while the geometrical framework is detailed in Fig. 1(b). At any time t , the cell membrane is parameterized by the map 
γ (t, .) defined on the torus T = R/2πR:

�t = {
γ (t, θ), θ ∈ T

}
.

The cell cytoplasm Oi
t is the domain enclosed by �t and the ECM is the outer domain

Oe
t = � \Oi

t .

Assume the flux of MT1-MMP enzymes g(t, ·) be given at any time on the cell membrane. It generates a flux of the degraded 
matrix (called ligands and denoted by c�) on the cell boundary, and these ligands diffuse in the extracellular medium as 
described by equations (1a)–(1b). When bound to the cell membrane, the ligands generate a signal σ , which diffuses inside 
the cell, as accounted for in equations (1c)–(1d). The cell membrane motion is described by equation (1e).

Degradation of the ECM:

	c� = 0, x ∈ Oe
t , (1a)

c�|∂� = 0, −∂nc�|�t = g|�t . (1b)

Generation of the inner signal for actin polymerization:

	σ = 0, t ∈ [0, T ], x ∈ Oi
t, (1c)

σ |�t = c�|�t . (1d)

Motion of the cell membrane:

∂tγ (t, θ) = ∇σ(γ (t, θ)), θ ∈ T, and �t = {γ (t, θ), θ ∈ T}. (1e)

The interested reader will refer to [16] for further details about biological phenomena, and modeling hypotheses. The 
theoretical analysis of the free-boundary problem is also performed in this article. In particular, the well-posedness of the 
free-boundary problem in Sobolev spaces is precisely proven, provided strictly positive boundary data g|�t . The proof is 
based on the explicit characterization of Dirichlet-to-Neumann maps thanks to complex analysis tools. Then, appropriate 



Download English Version:

https://daneshyari.com/en/article/4967621

Download Persian Version:

https://daneshyari.com/article/4967621

Daneshyari.com

https://daneshyari.com/en/article/4967621
https://daneshyari.com/article/4967621
https://daneshyari.com

