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In this paper, we present an accurate and efficient wavelet-based adaptive weighted 
essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrody-
namics (MHD) equations arising from the hyperbolic conservation systems. The proposed 
method works with the finite difference weighted essentially non-oscillatory (FD-WENO) 
method in space and the third order total variation diminishing (TVD) Runge–Kutta (RK) 
method in time. The philosophy of this work is to use the lifted interpolating wavelets as 
not only detector for singularities but also interpolator. Especially, flexible interpolations 
can be performed by an inverse wavelet transformation. When the divergence cleaning 
method introducing auxiliary scalar field ψ is applied to the base numerical schemes 
for imposing divergence-free condition to the magnetic field in a MHD equation, the 
approximations to derivatives of ψ require the neighboring points. Moreover, the fifth 
order WENO interpolation requires large stencil to reconstruct high order polynomial. 
In such cases, an efficient interpolation method is necessary. The adaptive spatial 
differentiation method is considered as well as the adaptation of grid resolutions. 
In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed 
stencil approximation without computing the non-linear WENO weights is used, and the 
characteristic decomposition method is replaced by a component-wise approach. Numerical 
results demonstrate that with the adaptive method we are able to resolve the solutions that 
agree well with the solution of the corresponding fine grid.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The ideal magnetohydrodynamics (MHD) equations model the motions of a perfectly conducting plasma and provide 
conservation laws for the mass, momentum, total energy, as well as magnetic field. The case that the magnetic field is 
identically zero in the MHD equations is equivalent to the Euler equation governing the dynamics of inviscid fluids. The 
equations have been received as the excellent models in various applications such as weather prediction, gas dynamics, 
astrophysics and plasma applications. It is important to implement accurate and efficient simulations of Euler and ideal 
magnetodynamics (MHD) equations. Recently high order methods have received great attention from various computational 
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fields. Popular classes of high order method for hyperbolic conservation laws incorporate the finite difference and finite 
volume WENO methods [1–3], the discontinuous Galerkin (DG) method [4–6], the spectral method [7] and so on.

Methods for adaptation of computational domains that are beneficial to simulate the physical phenomenon with vastly 
different spatial scales have been developed with diverse frameworks. The adaptive mesh refinement (AMR) methods with 
the finite difference WENO scheme [8] and the ADER-WENO (arbitrary derivative in space and time) [9–11] successfully 
verified the efficiency and accuracy of the AMR technique. Adaptive wavelet collocation Method (AWCM) [12–14] is one of 
the famous adaptation techniques. In the AWCM, the grid adaptation is based on analyzing the wavelet coefficients in the 
wavelet domain, and the partial differential equations are solved in physical space with the aid of finite difference methods.

It is already well known that many attractive tools of the wavelet Multi-Resolution Analysis (MRA) such as compres-
sion, denoising, edge detection and multi-scale decomposition have made themselves a promising approach in challenging 
researches. Actually, the AWCM has shown the potential as an adaptive numerical method by solving many different types 
of partial differential equations consisting of the elliptic [15], parabolic [12,14] and hyperbolic types [16,17]. Moreover, the 
ability of classifying the levels of grid points according to physical scales is demonstrated by simulating the Rayleigh–Taylor 
instability problem [18].

In this paper, we couple the AWCM framework with the fifth order FD-WENO scheme. The FD-WENO scheme is 
renowned for its high order accuracy, efficiency and robustness as well as its straightforward extension to multi-dimensional 
spaces via the dimensional splitting compared with finite volume methods. However, there is a major issue that need to 
be cleared. The proposed method devised on the finite difference concept, which is not the volume concept, is not fully 
conservative. It will be discussed in Section 5.

The outline of this paper is as follows: In Section 2 we introduce the model equations, Euler equation and ideal MHD 
equations. The characteristic decomposition method and the WENO interpolation algorithm are reviewed in Section 3. 
Section 4 is devoted to the description of the wavelet-based adaptation methodology involving the compression and re-
construction. In Section 5, we present the whole numerical process to evolve the solution and mention the issues to be 
addressed. In Section 6, the numerical results are implemented on several numerical examples in order to verify that the 
results obtained by our adaptive scheme are comparable to those of full grid scheme. Finally, conclusions and future works 
are given in Section 7.

2. Model equations

2.1. Euler equation

The Euler equation of gas dynamics is a non-linear system of partial differential equations described as
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where ρ, u, p and E are the density, velocity, thermal pressure and total energy, respectively. Each physical quantities are 
connected by specifying an equation of state:
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with a specific heat ratio γ . Here ‖·‖ indicates the Euclidean vector norm.

2.2. Ideal MHD equation

The ideal MHD equation that involves incompressible magnetic field can be described as
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∇ · B = 0, (3)

where B is a magnetic field, the total energy and total pressure are given by
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The eigen-structure of the ideal MHD equation (2) is derived in [19]. The eigenvalues of the Jacobian matrix along the unit 
normal direction n are given by
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