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We introduce an interface/coupling procedure for hyperbolic problems posed on time-
dependent curved multi-domains. First, we transform the problem from Cartesian to 
boundary-conforming curvilinear coordinates and apply the energy method to derive well-
posed and conservative interface conditions.
Next, we discretize the problem in space and time by employing finite difference operators 
that satisfy a summation-by-parts rule. The interface condition is imposed weakly using 
a penalty formulation. We show how to formulate the penalty operators such that the 
coupling procedure is automatically adjusted to the movements and deformations of the 
interface, while both stability and conservation conditions are respected.
The developed techniques are illustrated by performing numerical experiments on the 
linearized Euler equations and the Maxwell equations. The results corroborate the stability 
and accuracy of the fully discrete approximations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Multi-block schemes and in particular interface procedures that use Summation-by-Parts (SBP) operators together with 
the Simultaneous Approximation Term (SAT) technique [2], have previously been investigated in terms of conservation, sta-
bility and accuracy [3,5,6,10,11,26–29]. The focus of the SBP-SAT methodology has been, so far, mostly on time-independent 
spatial domains with a notable exception being [1].

In this article, we extend the techniques introduced in [1] for handling time-dependent boundaries in a single domain 
problem, to a multi-domain context with deforming interfaces. The new time-dependent interface formulation is conserva-
tive, provably stable and high order accurate.

The rest of this article proceeds as follows. We start, in section 2, by transforming the continuous problem from Cartesian 
to curvilinear coordinates. Next, we study the problem using the energy method, our analytical tool, and derive conditions 
for conservation and well-posedness. Section 3 deals with the discrete problem where we study conservation and stability 
of the interface procedures and show the similarities with the continuous problem. In section 4, numerical experiments 
are performed to show the accuracy and the usefulness of the scheme. Finally, we summarize and draw conclusions in 
section 5.
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Fig. 1. A schematic of the domains �L,R (t) and the time-dependent 
interface I(t).

Fig. 2. A schematic of the transformed domains �L,R and the time-
independent interface I .

2. The continuous problem

Consider one hyperbolic problem with solution W posed on two nearby spatial domains, as

Ut + ÂUx + B̂U y = 0, (x, y) ∈ �L(t), t ∈ [0, T ],
Vt + ÂV x + B̂ V y = 0, (x, y) ∈ �R(t), t ∈ [0, T ]. (1)

The solutions U , V represent the left L and right R values of the continuous solution W posed on the union of �L(t) and 
�R(t), where �L,R(t) are the time-dependent sub-domains. In (1), x and y are the spatial coordinates and t represents time. 
The matrices Â and B̂ are constant, symmetric [19,25] and of size l × l. We focus on the case where the deformations of 
�L,R(t) are mainly caused by the moving and/or deforming interface I(t), see Fig. 1.

Next, two time-dependent invertible Lagrangian–Eulerian transformations [22] of �L,R(t) from Cartesian to curvilinear 
coordinates as

x(τ , ξ,η) � ξ(t, x, y), y(τ , ξ,η) � η(t, x, y), τ = t, (2)

are introduced. We consider boundary-conforming curvilinear coordinates where the boundaries of �L,R are composed of 
segments with constant ξ, η, resulting in fixed spatial sub-domains after the transformations [30]. The fixed sub-domains 
are denoted by �L,R and shown schematically in Fig. 2. The interface between �L and �R , denoted by I , is now time-
independent in η, ξ space.

The transformations we have used both satisfy⎡
⎣ ∂/∂ξ

∂/∂η
∂/∂τ

⎤
⎦ =

⎡
⎣ xξ yξ 0

xη yη 0
xτ yτ 1

⎤
⎦

︸ ︷︷ ︸
:=[ J ]

⎡
⎣ ∂/∂x

∂/∂ y
∂/∂t

⎤
⎦ , (3)

where the subscripts ξ, η and τ denote partial derivatives and [ J ] is the Jacobian matrix of the transformation. By consid-
ering the Jacobian matrix of the inverse transformation, the following metric relations are obtained [12,30]

Jξt = xη yτ − xτ yη, Jξx = yη, Jξy = −xη,

Jηt = yξ xτ − xξ yτ , Jηx = −yξ , Jηy = xξ ,
(4)

where J = xξ yη − xη yξ > 0 is the determinant of [ J ].
For non-singular (invertible) transformations, the Geometric Conservation Law (GCL) [12,30] holds, i.e.

Jτ + ( Jξt)ξ + ( Jηt)η = 0,

( Jξx)ξ + ( Jηx)η = 0,

( Jξy)ξ + ( Jηy)η = 0.

(5)

Remark 1. For ease of presentation, we have not distinguished between the left and right transformations in (2), (3), (4) and (5)
whereas in the remainder of the article, we will show this by using the subscripts L and R.

Next, the governing equations in (1) are expressed in terms of ξ , η and τ by using the chain rule and multiplying the 
results with J L,R , as

J L Uτ + AL Uξ + B L Uη = 0, (ξ, η) ∈ �L, τ ∈ [0, T ],
J R Vτ + AR V ξ + B R Vη = 0, (ξ, η) ∈ �R , τ ∈ [0, T ], (6)

where



Download	English	Version:

https://daneshyari.com/en/article/4967626

Download	Persian	Version:

https://daneshyari.com/article/4967626

Daneshyari.com

https://daneshyari.com/en/article/4967626
https://daneshyari.com/article/4967626
https://daneshyari.com/

