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We present a novel approach to the simulation of miscible displacement by employing 
adaptive enriched Galerkin finite element methods (EG) coupled with entropy residual 
stabilization for transport. In particular, numerical simulations of viscous fingering instabil-
ities in heterogeneous porous media and Hele–Shaw cells are illustrated. EG is formulated 
by enriching the conforming continuous Galerkin finite element method (CG) with 
piecewise constant functions. The method provides locally and globally conservative fluxes, 
which are crucial for coupled flow and transport problems. Moreover, EG has fewer 
degrees of freedom in comparison with discontinuous Galerkin (DG) and an efficient 
flow solver has been derived which allows for higher order schemes. Dynamic adaptive 
mesh refinement is applied in order to reduce computational costs for large-scale three 
dimensional applications. In addition, entropy residual based stabilization for high order 
EG transport systems prevents spurious oscillations. Numerical tests are presented to show 
the capabilities of EG applied to flow and transport.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Miscible displacement of one fluid by another in a porous medium has attracted considerable attention in subsurface 
modeling with emphasis on enhanced oil recovery applications [1–4]. Here flow instabilities arising when a fluid with 
higher mobility displaces another fluid with lower mobility is referred to as viscous fingering. The latter has been the topic 
of major physically driven experimental, numerical and mathematical studies for over half a century [5–12]. Recently, viscous 
fingering has been applied for proppant-filled hydraulic fracture propagation [13–15] for efficient transport of proppant to 
the tip of fractures.

The governing mathematical system that represents the displacement of the fluid mixtures consists of pressure, velocity, 
and concentration. Examples of numerical schemes for approximating this system include the following; continuous Galerkin 
[16–18], interior penalty Galerkin [19,20], finite differences [21], finite volumes [22], modified method of characteristics 
[23,24], mixed finite elements [25–27], and characteristic-mixed finite elements [28,29]. An effective approach that deals 
robustly with general partial differential equations as well as with equations whose type changes within the computational 
domain such as from advection dominated to diffusion dominated is discontinuous Galerkin (DG) [30–34]. DG is well suited 
for multi-physics applications and for problems with highly varying material properties [35,36]. Combining mixed finite 
elements and discontinuous Galerkin was studied in [37,38].

* Corresponding author.
E-mail addresses: shlee@ices.utexas.edu (S. Lee), mfw@ices.utexas.edu (M.F. Wheeler).

http://dx.doi.org/10.1016/j.jcp.2016.10.072
0021-9991/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2016.10.072
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:shlee@ices.utexas.edu
mailto:mfw@ices.utexas.edu
http://dx.doi.org/10.1016/j.jcp.2016.10.072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2016.10.072&domain=pdf


20 S. Lee, M.F. Wheeler / Journal of Computational Physics 331 (2017) 19–37

There are three major issues with the above numerical approximations for coupling flow and transport; i) local mass 
balance, ii) local grid adaptivity, and iii) efficient solution algorithms for Darcy flow. It is well known that differentiating nu-
merical approximations to obtain a flux suffers from loss of accuracy and the lack of local conservation on the existing mesh 
as well as yielding non-physical results for transport with this given flux. It is important to choose a numerical approxi-
mation which preserves local conservation to avoid spurious sources [39]. In addition, the complexities in implementing 
dynamic grid adaptations can limit the extension of schemes to realistic physical applications. Often methods which are 
computationally costly due to the number of degrees of freedom and lack of efficient solvers cannot be extended to higher 
order approximations for large-scale multi-physics problems with highly varying material properties.

In this paper, we introduce a new method for a flow and transport system, the enriched Galerkin finite element method 
(EG). This approach provides a locally and globally conservative flux and preserves local mass balance for transport. EG is 
constructed by enriching the conforming continuous Galerkin finite element method (CG) with piecewise constant functions 
[40–42], with the same bilinear forms as the interior penalty DG schemes. Moreover, EG has substantially fewer degrees of 
freedom in comparison with DG and a fast effective solver whose cost is roughly that of CG and EG can handle arbitrary 
orders of approximation [42,43]. An additional advantage of EG is that only those subdomains that require local conservation 
need to be enriched with a treatment of high order non-matching grids.

Our high order EG transport system is coupled with an entropy viscosity residual stabilization method introduced in [44]
to avoid spurious oscillations near shocks. Instead of using limiters and non-oscillatory reconstructions, this method employs 
the local residual of an entropy equation to construct numerical diffusion, which is added as a nonlinear dissipation to the 
numerical discretization of the system. The amount of numerical diffusion added is proportional to the computed entropy 
residual. This technique is independent of mesh and order of approximation and has been shown to be efficient and stable 
in solving many physical problems with CG [45–49] and DG [50].

In our numerical examples, we illustrate that it is crucial to employ dynamic mesh adaptivity in order to reduce com-
putational costs for large-scale three dimensional applications. Earlier work on adaptive local grid refinement in a variety 
contexts for flow and transport in porous media includes [51,17,52–56]. In this paper, we employ the entropy residual for 
dynamic adaptive mesh refinement to capture the moving interface between the miscible fluids. It is shown in [57,58] that 
the entropy residual can be used as a posteriori error indicator. Entropy residuals converge to the Dirac measures supported 
in the shocks as the discretization mesh size goes to zero whereas the residual of the equation converges to zero based on 
consistency [44]. Therefore the entropy residual is able to capture shocks more robustly than general residuals.

In summary, the novelties of the present paper are that we establish efficient and robust enriched Galerkin (EG) approx-
imations for miscible displacement problems. We couple the high order entropy viscosity stabilization to an EG transport 
system and implement dynamic mesh adaptivity. In addition, we provide numerical examples to assess the performance of 
the scheme including viscous fingering instabilities.

The paper is organized as follows. The mathematical model is presented in Section 2. In Section 3, we formulate EG 
for flow and transport system with the entropy viscosity stabilization method and a global solution algorithm. Various 
numerical examples are reported in Section 4.

2. Mathematical model

Let � ⊂ Rd be a bounded polygon (for d = 2) or polyhedron (for d = 3) with Lipschitz boundary ∂� and (0, T] is the 
computational time interval with T > 0. We consider a multi-component miscible displacement system with a single phase 
slightly compressible flow. The advection–diffusion transport system for the miscible components i is given as

∂

∂t
(ϕρci) + ∇ · (ρuci − ϕρD(u)∇ci) = q̃i, in � × (0,T], (1)

where ϕ is the porosity, u : � × [0, T] → Rd is the velocity, ci : � × (0, T ] → R is the advected mass fraction of the 
component i of the solution, and the average density ρ is defined as

ρ :=
(

Nc∑
i=1

ci

ρi

)−1

(2)

with the total number of components Nc by assuming there is no volume change in mixing. For convenience, we assume 
only two components in our case (Nc = 2 and i = 1, 2), in particular we set c := c1 and 1 − c := c2. This leads to solving for 
only one component as follows;

∂

∂t
(ϕρc) + ∇ · (ρuc − ϕρD(u)∇c) = q̃, in � × (0,T], (3)

where q̃ := q̃1 without loss of generality and the remaining component is obtained by the relation c1 + c2 = 1. Since the 
flow is assumed to be slightly compressible, the compressibility coefficient satisfies ci

F � 1 in the relationship

ρi(p) ≈ ρ i
0(1 + ci

F p),
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