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The explicit and semi-implicit schemes in flow simulations involving complex geometries 
and moving boundaries suffer from time-step size restriction and low convergence rates. 
Implicit schemes can be used to overcome these restrictions, but implementing them to 
solve the Navier–Stokes equations is not straightforward due to their non-linearity. Among 
the implicit schemes for non-linear equations, Newton-based techniques are preferred over 
fixed-point techniques because of their high convergence rate but each Newton iteration is 
more expensive than a fixed-point iteration. Krylov subspace methods are one of the most 
advanced iterative methods that can be combined with Newton methods, i.e., Newton–
Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs 
vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is 
very expensive, and matrix-free methods without a preconditioner slow down as the mesh 
is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to 
solve unsteady incompressible Navier–Stokes momentum equations on staggered overset-
curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used 
to form a preconditioner for matrix-free method in order to improve its performance. 
The NKM with the analytical Jacobian was validated and verified against Taylor–Green 
vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in 
a 90 degree bend. The capability of the method in handling complex geometries with 
multiple overset grids and immersed boundaries is shown by simulating an intracranial 
aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times 
faster than the fixed-point Runge–Kutta method, and 1.74 to 152.3 times (excluding an 
intensively stretched grid) faster than automatic differentiation depending on the grid 
(size) and the flow problem. In addition, it was shown that using only the diagonal of 
the Jacobian further improves the performance by 42–74% compared to the full Jacobian. 
The NKM with an analytical Jacobian showed better performance than the fixed point 
Runge–Kutta because it converged with higher time steps and in approximately 30% less 
iterations even when the grid was stretched and the Reynold number was increased. In 
fact, stretching the grid decreased the performance of all methods, but the fixed-point 
Runge–Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal 
and full Jacobian, respectivley, when the stretching factor was increased. The NKM with a 
diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are 
the fastest methods and the superiority of one to another depends on the flow problem. 
Furthermore, the implemented methods are fully parallelized with parallel efficiency of 
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80–90% on the problems tested. The NKM with the analytical Jacobian can guide building 
preconditioners for other techniques to improve their performance in the future.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Simulating flows involving arbitrarily moving complex geometries are of interest in many areas, such as flow inside the 
vascular systems [1–7], swimming/flying in nature [8–13], flows with suspended particles [14–16], etc. Currently, one of 
the main challenges in simulating such flows is the small time-step size restriction, e.g., Griffith [17] discussed the severe 
restriction on the time-step size imposed by his explicit scheme in simulations of an aortic heart valve using the immersed 
boundary method. Mittal et al. [18] used an implicit Crank–Nicolson scheme for the diffusion terms to eliminate the nu-
merical instabilities, while the non-linear convective terms were treated explicitly in their immersed boundary method. 
The simulations of Mangual et al. [19], Domenichini and Pedrizzetti [20], de Tullio et al. [21], and Tytell et al. [22] all 
used the immersed boundary method, which sets small time-step restrictions due to their explicit nature. Robust implicit 
time integrations are needed to reduce the time-step limitations of such simulations, which will lower the computational 
cost and allow for higher spatial resolution. However, developing fully implicit methods for Navier–Stokes equations is not 
straightforward due to their non-linearity. In these cases, the methods for solving non-linear systems of equations need to 
be employed. There are two main categories of implicit solvers for non-linear systems of equations: 1) fixed-point methods; 
and 2) Newton-based methods. The applied mathematics community has emphasized on Newton-based methods for bound-
ary value problems in which the steady-state solution of non-linear equations is desired [23]. However, the computational 
physics community has focused on fixed-point type methods for initial value problems, where dynamic evolution of the 
equations is required [23].

The first category is interchangeably named as fixed-point, Picard linearization, and successive substitution method [24]. 
The fixed-point method for solving the system of non-linear algebraic equations F (

−→
U ) = 0 can be written as:

F (
−→
U (k)) = −→

U (k+1) − −→
U (k) = �−→

U (k) (1)

where k is the fixed-point iteration index. Dual time-stepping methods can be viewed as a fixed-point iteration as well [25,
26]. Fixed-point methods are implemented in conjunction with the pressure–velocity coupling algorithms such as artificial 
compressibility [26], SIMPLE family [27], PISO [28], and fractional-step [29] for solving incompressible Navier–Stokes equa-
tion. Fractional-step requires smaller time-step size in comparison to SIMPLE and PISO, while it requires less correction 
iterations than SIMPLE and PISO [30].

The second category is the Newton method, which is a classical algorithm for finding a solution to the system of non-
linear algebraic equations F (

−→
U ) = 0 [31,32]. Given an initial guess 

−→
U (0) , a sequence of steps �−→

U (k) is computed as follows:

A(
−→
U (k))�−→

U (k) = −F (
−→
U (k))

−→
U (k+1) = −→

U (k) + �−→
U (k)

(2)

where k is Newton iteration index and A = d
−→
F

d
−→
U

is the associated Jacobian matrix [31,33]. The Newton Eq. (2) is a system 
of linear algebraic equations which must be solved at each Newton iteration (k). Newton-based methods have been pre-
viously implemented in conjunction with the pressure–velocity coupling algorithms such as velocity–vorticity method [34,
35], as a multigrid smoother in a SIMPLE method [36], and fractional-step [37] for solving incompressible Navier–Stokes 
equation. The main advantage of Newton methods over fixed-point type methods is the ability to take large time-steps 
and super-linear convergence rates [38]. On the other hand, requiring a sufficiently good initial condition is the Newton 
methods’ drawback [39,38]. Considering the advantages of Newton methods, they are implemented in this framework and 
are systematically compared against a fixed-point method.

The Newton equation at each k can be solved by either direct or iterative methods. Because A is typically approximated 
(the approximation of A does not affect the solution as long as the Newton iterations converge) and the initial condition is 
typically far from the solution, the exact solution at each iteration (k) may not be justified. Therefore, an iterative method 
is typically used for solving Newton equations at each iteration. In this case, the exact solution of Eq. (2) is not obtained 
at each iteration k, which is referred to as the inexact Newton method [40]. Therefore, a strict quadratic convergence 
is typically not achieved [23]. Some of the most advanced iterative methods are the Krylov subspace methods [41–44]
including the generalized minimal residual method (GMRES) [45] and preconditioned GMRES [46]. Krylov subspace methods 
were introduced by Hestenes et al. [47] and Reid [48] as iterative methods to solve large linear systems of equations.

For solving Newton equations using a Krylov subspace method either the Jacobian (A) or the Jacobian-vector product 
(A�−→

U ) should be formed by: (a) a matrix-free (MF); (b) an automatic differentiation (AD); or (c) an analytical Jacobian 
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