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We develop adaptive numerical schemes for the Vlasov equation by combining discontinu-
ous Galerkin discretisation, multiresolution analysis and semi-Lagrangian time integration. 
We implement a tree based structure in order to achieve adaptivity. Both multi-wavelets 
and discontinuous Galerkin rely on a local polynomial basis. The schemes are tested and 
validated using Vlasov–Poisson equations for plasma physics and astrophysics.
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1. Introduction

Many numerical experiments are performed on the Vlasov–Poisson problem since it is a well known (but not fully un-
derstood) system from plasma physics and a major issue for future simulation of large scale plasmas. Our goal is to develop 
adaptive numerical schemes using discontinuous Galerkin discretisation combined with semi-Lagrangian description whose 
mesh refinement is based on multi-wavelets. In [16], the authors start from the standard formulation of finite-volume 
schemes for conservation laws and transform them into adaptive finite-volume schemes by using multiscale representations 
of the data. In the same philosophy, starting from the standard formulation of the discontinuous Galerkin method for con-
servation laws the authors of Refs. [3,38,28,32,27] use a multi-wavelet representation of the unknowns to put these schemes 
into an adaptive setting. Following the spirit of these works, and in order to solve the transport and continuity equations, 
we use a multi-wavelet representation of the unknowns to transform the semi-Lagrangian discontinuous Galerkin schemes 
of references [29,36] into adaptive multiresolution versions. The discontinuous Galerkin formulation enables high-order ac-
curacy with local data for computation. It has recently been widely studied by Heath [30], Ayuso de Dios et al. [4,5], Cheng 
et al. [12], Rossmanith et al. [37], Restelli et al. [33], etc. Those are done with Eulerian description of the time resolution but 
Guo et al. [29] or Qiu and Shu [36], Crouseilles et al. [19] or Bokanowski and Simarta [10] performed semi-Lagrangian time 
resolution. We use multi-wavelets framework for the adaptive part (more precisely, for the multiscale representation of the 
distribution function of particles). Those have been heavily studied by Alpert et al. [1,2]. Some works merging multiscale 
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resolution and discontinuous Galerkin methods have been described by Archibald et al. [3] for convection based problems, 
by Müller et al. for non-linear hyperbolic conservation laws in the finite volume framework [32,28] or for compressible flows 
[27]. In the framework of relativistic Vlasov equation, Besse et al. [7] presented the advantage of using adaptive meshes. 
While they used wavelet representation, which requires large data stencil, multi-wavelet representation coupled to discon-
tinuous Galerkin discretisation only requires local stencil. This favours the parallelisation but an efficient parallel version of 
our numerical schemes (presented hereafter) will be the matter of future work. Here we start with two semi-Lagrangian 
discontinuous Galerkin schemes which are presented in [36] and [29]. We call them the SLDG [36] and CDG [29] schemes. 
We then modify these schemes to obtain adaptive multiresolution schemes with an adaptive mesh coarsening and refine-
ment procedure. To achieve this aim, among other things detailed in Secs. 4, 5 and 6, the data are represented in a different 
finite-dimensional space which is constructed by using a multi-wavelet basis [1,2]. The multiscale representation, given by 
the multi-wavelet basis, allows to give a well-defined and natural link between local small scales of the distribution function 
(or data) and the local size of the adaptive mesh. Then multi-wavelet representation of data is the relevant tool to develop 
natural and efficient criteria for designing an adaptive mesh (refinement versus coarsening) which follows the multiscale 
development of the distribution function. Therefore we obtain new numerical schemes that we call AMW-SLDG (Adaptive 
Multi-Wavelet SLDG) and AMW-CDG.

Let us note that the SLDG and CDG schemes are equivalent when we consider the one-dimensional advection or conti-
nuity equations on a one-dimensional grid with periodic boundary conditions. The proof is given in [36], where the authors 
assumed that all integrals involved in the schemes are exactly computed. Nevertheless it is important to start with two non-
adaptive methods which can be proven equivalent to see if our adaptive procedure introduces a bias or some differences 
between them. For the moment there is no mathematical proof that the AMW-SLDG and AMW-CDG schemes are equivalent. 
It is not only a difficult task but it remains a true open question. Actually we do not know if they are rigorously equivalent. 
What is certain is that the proof performed in [36] can not be extended for non-conformal adaptive n-dimensional mesh 
(with n ≥ 2), which is our case. In addition in our case, where the mesh is not uniform and non-conformal, integrals are 
not computed exactly. Nevertheless we may expect that the AMW-SLDG and AMW-CGD schemes are close to each other, 
and that our procedure does not break the “symmetry” between these two schemes. A way to confirm such intuition is to 
make systematic comparisons of the AMW-SLDG and AMW-CDG schemes.

The paper is organised as follows. Sec. 2 presents the Vlasov–Poisson equations and their conservation properties. Sec. 3
deals with several discontinuous Galerkin methods and their application in semi-Lagrangian framework. Sec. 4 describes the 
multi-wavelets used to get a multiscale reconstruction of the distribution function. In Sec. 5 we identify some numerical 
error sources which are responsible for a loss of some conservation laws. A brief overview of numerical implementation 
and a summary of the full algorithm are presented in Sec. 6. Some numerical results in plasma physics and astrophysics 
are presented in Sec. 7. Finally, the conclusion reminds the main points of our paper and gives future perspectives of 
work.

2. The Vlasov–Poisson equation

We considered the following Vlasov equation{
∂t f (x, v, t) + ∂x(v f (x, v, t)) + ∂v(E(x, t) f (x, v, t)) = 0, x ∈ �x, v ∈R,

f (x, v,0) = f0(x, v),
(1)

where f (x, v, t) is the phase-space distribution function and E(x, t) is the electric field obtained from the Poisson equation

−��(x, t) = ρ(x, t) − 1, x ∈ �x (2a)

E(x, t) = −∂x�(x, t), (2b)

with �(x, t) the electric potential and ρ(x, t) the charge density linked to the distribution function f according to

ρ(x, t) =
∫
R

f (x, v, t)dv. (3)

This equation is written in adimensional variables using a fixed background of ions such that the global plasma is neutral 
and the integral of the distribution function on the complete phase-space is equal to 1. This system is closed using periodic 
boundary conditions and zero average for E(x, t). The set �x is a compact domain of physical space with periodic boundary 
conditions. It is impossible from a practical point of view to use an infinite domain in v , except if the initial distribution 
function is compactly supported. For this reason most of the time we consider a domain �v = [−L, L] with L large enough 
to ensure Dirichlet boundary conditions. In our simulations, given our initial conditions, we know that the solution remains 
bounded in velocity space by a decreasing exponential (uniformly in x). If we take a domain large enough in the velocity 
direction, then integrals are small enough to ensure that the error is bounded by a small exponential. Such estimation has 
been used in many semi-Lagrangian codes, such as the one from [6]. We call � = �x × �v .
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