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The Scheduled Relaxation Jacobi (SRJ) method is an extension of the classical Jacobi 
iterative method to solve linear systems of equations (Au = b) associated with elliptic 
problems. It inherits its robustness and accelerates its convergence rate computing a set of 
P relaxation factors that result from a minimization problem. In a typical SRJ scheme, the 
former set of factors is employed in cycles of M consecutive iterations until a prescribed 
tolerance is reached. We present the analytic form for the optimal set of relaxation factors 
for the case in which all of them are strictly different, and find that the resulting algorithm 
is equivalent to a non-stationary generalized Richardson’s method where the matrix of 
the system of equations is preconditioned multiplying it by D = diag(A). Our method to 
estimate the weights has the advantage that the explicit computation of the maximum 
and minimum eigenvalues of the matrix A (or the corresponding iteration matrix of 
the underlying weighted Jacobi scheme) is replaced by the (much easier) calculation of 
the maximum and minimum frequencies derived from a von Neumann analysis of the 
continuous elliptic operator. This set of weights is also the optimal one for the general 
problem, resulting in the fastest convergence of all possible SRJ schemes for a given grid 
structure. The amplification factor of the method can be found analytically and allows for 
the exact estimation of the number of iterations needed to achieve a desired tolerance. 
We also show that with the set of weights computed for the optimal SRJ scheme for a 
fixed cycle size it is possible to estimate numerically the optimal value of the parameter 
ω in the Successive Overrelaxation (SOR) method in some cases. Finally, we demonstrate 
with practical examples that our method also works very well for Poisson-like problems 
in which a high-order discretization of the Laplacian operator is employed (e.g., a 9- or 
17-points discretization). This is of interest since the former discretizations do not yield 
consistently ordered A matrices and, hence, the theory of Young cannot be used to predict 
the optimal value of the SOR parameter. Furthermore, the optimal SRJ schemes deduced 
here are advantageous over existing SOR implementations for high-order discretizations of 
the Laplacian operator in as much as they do not need to resort to multi-coloring schemes 
for their parallel implementation.
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1. Introduction

The Jacobi method [1] is an iterative algorithm to solve systems of linear equations. Due to its simplicity and its con-
vergence properties it is a popular choice as preconditioner, in particular when solving elliptic partial differential equations. 
However, its slow rate of convergence, compared to other iterative methods (e.g. Gauss–Seidel, SOR, Conjugate gradient, 
GMRES), makes it a poor choice to solve linear systems. The scheduled relaxation Jacobi method [2], SRJ hereafter, is an 
extension of the classical Jacobi method, which increases the rate of convergence in the case of linear problems that arise 
in the finite difference discretization of elliptic equations. It consists of executing a series of weighted Jacobi steps with 
carefully chosen values for the weights in the sequence. The SRJ method can be expressed for a linear system Au = b as

un+1 = un + ωn D−1(b − Aun), (1)

where D is the diagonal of the matrix A. If we consider a set of P different relaxation factors, ωn , n = 1, . . . , P , such that 
ωn > ωn+1 and we apply each relaxation factor qn times, the total amplification factor after M :=∑P

n=1 qn iterations is

G M(κ) =
P∏

n=1

(1 − ωnκ)qn , (2)

which is an estimation of the reduction of the residual during one cycle (M iterations). In the former expression κ is a 
function of the wave-numbers obtained from a von Neumann analysis of the system of linear equations resulting from the 
discretization of the original elliptical problem by finite differences (for more details see [2,3]). Yang & Mittal [2] argued 
that, for a fixed number P of different weights, there is an optimal choice of the weights ωn and repetition numbers qn

that minimizes the maximum per-iteration amplification factor, �M(κ) = |G M(κ)|1/M , in the interval κ ∈ [κmin, κmax] and 
therefore also the number of iterations needed for convergence. The boundaries of the interval in κ correspond to the 
minimum and the maximum weight numbers allowed by the discretization mesh and boundary conditions used to solve 
the elliptic problem under consideration.

In the aforementioned paper, [2] computed numerically the optimal weights for P ≤ 5 and Adsuara et al. [3] extended 
the calculations up to P = 15. The main properties of the SRJ, obtained by [2] and confirmed by [3], are the following:

1. Within the range of P studied, increasing the number of weights P improves the rate of convergence.
2. The resulting SRJ schemes converge significantly faster than the classical Jacobi method by factors exceeding 100 in the 

methods presented by [2] and ∼ 1000 in those presented by [3]. Increasing grid sizes, i.e. decreasing κmin, results in 
larger acceleration factors.

3. The optimal schemes found use each of the weights multiple times, resulting in a total number of iterations M per 
cycle significantly larger than P , e.g. for P = 2, [2] found an optimal scheme with M = 16 for the smallest grid size 
they considered (N = 16), while for larger grids M notably increases (e.g., M = 1173 for N = 1024).

The optimization procedure outlined by [2] has a caveat though. Even if the amplification factor were to reduce mono-
tonically by increasing P , for sufficiently high values of P , the number of iterations per cycle M may be comparable to the 
total number of iterations needed to solve a particular problem for a prescribed tolerance. At this point, using a method 
with higher P , and thus higher M , would increase the number of iterations to converge, even if the �(κ) is nominally 
smaller. With this limitation in mind we outline a procedure to obtain optimal SRJ schemes, minimizing the total num-
ber of iterations needed to reduce the residual by an amount sufficient to reach convergence or, equivalently, to minimize 
|G M(κ)|. Note that the total number of iterations can be chosen to be equal to M without loss of generality, i.e. one cycle 
of M iterations is needed to reach convergence. To follow this procedure one should find the optimal scheme for fixed 
values of M , and then choose M such that the maximum value of |G M (κ)| is similar to the residual reduction needed to 
solve a particular problem. The first step, the minimization problem, is in general difficult to solve, since fixing M gives an 
enormous freedom in the choice of the number of weights P , which can range from 1 to M . However, the numerical results 
of [2] and [3], seem to suggest that in general increasing the number of weights P will always lead to better convergence 
rates. This leads us to conjecture that the optimal SRJ scheme, for fixed M , is the one with P = M , i.e. all weights are 
different and each weight is used once per cycle, qi = 1, (i = 1, . . . , M). In terms of the total amplification factor G M (κ), it 
is quite reasonable to think that if one maximizes the number of different roots by choosing P = M , the resulting function 
is, on average, closer to zero than in methods with smaller number of roots, P < M , and one might therefore expect smaller 
maxima for the optimal set of coefficients. One of the aims of this work is to compute the optimal coefficients for this 
particular case and demonstrate that P = M is indeed the optimal case.

Another goal of this paper is to show the performance of optimal SRJ methods compared with optimal SOR algorithms 
applied to a number of different discretizations of the Laplacian operator in two-dimensional (2D) and three-dimensional 
(3D) applications (Sect. 3). We will show that optimal SRJ methods applied to high-order discretizations of the Laplacian, 
which yield iteration matrices that cannot be consistently ordered, perform very similarly to optimal SOR schemes (when an 
optimal SOR weight can be computed). We will further discuss that the trivial parallelization of the SRJ methods outbalances 
the slightly better scalar performance of SOR in some cases (Sect. 3.3). Also, we will show that the optimal weight of the 
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