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This paper presents a new finite element (FE) formulation for liquid shells that is based 
on an explicit, 3D surface discretization using C1-continuous finite elements constructed 
from NURBS interpolation. Both displacement-based and mixed displacement/pressure 
FE formulations are proposed. The latter is needed for area-incompressible material 
behavior, where penalty-type regularizations can lead to misleading results. In order to 
obtain quasi-static solutions for liquid shells devoid of shear stiffness, several numerical 
stabilization schemes are proposed based on adding stiffness, adding viscosity or using 
projection. Several numerical examples are considered in order to illustrate the accuracy 
and the capabilities of the proposed formulation, and to compare the different stabilization 
schemes. The presented formulation is capable of simulating non-trivial surface shapes 
associated with tube formation and protein-induced budding of lipid bilayers. In the latter 
case, the presented formulation yields non-axisymmetric solutions, which have not been 
observed in previous simulations. It is shown that those non-axisymmetric shapes are 
preferred over axisymmetric ones.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Biological membranes form the boundaries of cells and cell-internal organelles such as the endoplasmic reticulum, the 
Golgi complex, mitochondria and endosomes. Mechanically they are liquid shells that exhibit fluid-like behavior in-plane 
and solid-like behavior out-of-plane. They mainly consist of self-assembled lipid bilayers and proteins. At the macroscopic 
level, these membranes exist in different shapes such as invaginations, buds and cylindrical tubes [69,58,41,56]. These 
shapes arise as a result of the lateral loading due to cytoskeletal filaments and protein-driven spontaneous curvature. Cell 
membranes undergo many morphological and topological shape transitions to enable important biological processes such as 
endocytosis [9,35,43], cell motility [30] and vesicle formation [21,8]. The shape transitions occur as a result of lateral loading 
on the membranes from cytoskeletal filaments, such as actin, from osmotic pressure gradients across the membrane, or from 
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List of important symbols

1 identity tensor in R3

aα co-variant tangent vectors of surface S at 
point x; α = 1, 2

Aα co-variant tangent vectors of surface S0 at 
point X ; α = 1, 2

aα contra-variant tangent vectors of surface S at 
point x; α = 1, 2

Aα contra-variant tangent vectors of surface S0 at 
point X ; α = 1, 2

aα,β parametric derivative of aα w.r.t. ξβ

aα;β co-variant derivative of aα w.r.t. ξβ

aαβ co-variant metric tensor components of sur-
face S at point x

Aαβ co-variant metric tensor components of sur-
face S0 at point X

a class of stabilization methods based on artifi-
cial shear viscosity

A class of stabilization methods based on artifi-
cial shear stiffness

bαβ co-variant curvature tensor components of 
surface S at point x

Bαβ co-variant curvature tensor components of 
surface S0 at point X

B left surface Cauchy–Green tensor
cαβγ δ contra-variant components of the material 

tangent
C right surface Cauchy–Green tensor
γ surface tension of S
�

γ
αβ Christoffel symbols of the second kind

da differential surface element on S
dA differential surface element on S0
δ... variation of ...
e index numbering the finite elements; e =

1, ..., nel
ε penalty parameter
fe finite element force vector of element 	e

g expression for the area-incompressibility con-
straint

G expression for the weak form
Ge contribution to G from finite element 	e

ge finite element ‘force vector’ of element 	e due 
to constraint g

H mean curvature of S at x
H0 spontaneous curvature prescribed at x
I index numbering the finite element nodes
I1, I2 first and second invariants of the surface 

Cauchy–Green tensors
i surface identity tensor on S
I surface identity tensor on S0
J surface area change

k bending modulus
k∗ Gaussian modulus
K initial in-plane membrane bulk modulus
Keff effective in-plane membrane bulk modulus

ke finite element tangent matrix associated with 
fe and ge

κ Gaussian curvature of surface S at x
κ1, κ2 principal curvatures of surface S at x
LI pressure shape function of finite element 

node I
λ1, λ2 principal surface stretches of S at x
me number of pressure nodes of finite element 	e

mν, mτ bending moment components acting at x ∈ ∂S
m̄ν, m̄τ prescribed bending moment components
Mαβ contra-variant bending moment components
μ initial in-plane membrane shear stiffness
μeff effective in-plane membrane shear stiffness
nno total number of finite element nodes used to 

discretize S
nel total number of finite elements used to dis-

cretize S
nmo total number of finite element nodes used to 

discretize pressure q
ne number of displacement nodes of finite ele-

ment 	e

Nαβ total, contra-variant, in-plane membrane stress 
components

NI displacement shape function of finite element 
node I

n surface normal of S at x
N surface normal of S0 at X
N array of the shape functions for element 	e

ν in-plane membrane shear viscosity
ν normal vector on ∂S
ξα convective surface coordinates; α = 1, 2
P class of stabilization methods based on normal 

projection; projection matrix
q Lagrange multiplier associated with area-

incompressibility
q array of all Lagrange multipliers qI in the sys-

tem; I = 1, ..., nmo
qe array of all Lagrange multipliers qI for finite 

element 	e; I = 1, ..., me

Sα contra-variant, out-of-plane shear stress com-
ponents

S current configuration of the surface
S0 initial configuration of the surface
σ Cauchy stress tensor of the shell
σαβ stretch related, contra-variant, in-plane mem-

brane stress components
t effective traction acting on the boundary ∂S

normal to ν
t̄ prescribed boundary tractions on Neumann 

boundary ∂tS
T traction acting on the boundary ∂S normal 

to ν
T α traction acting on the boundary ∂S normal 

to aα

V, Q admissible function spaces
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