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The threshold dynamics method developed by Merriman, Bence and Osher (MBO) is an 
efficient method for simulating the motion by mean curvature flow when the interface is 
away from the solid boundary. Direct generalization of MBO-type methods to the wetting 
problem with interfaces intersecting the solid boundary is not easy because solving the 
heat equation in a general domain with a wetting boundary condition is not as efficient 
as it is with the original MBO method. The dynamics of the contact point also follows 
a different law compared with the dynamics of the interface away from the boundary. 
In this paper, we develop an efficient volume preserving threshold dynamics method 
for simulating wetting on rough surfaces. This method is based on minimization of the 
weighted surface area functional over an extended domain that includes the solid phase. 
The method is simple, stable with O (N log N) complexity per time step and is not sensitive 
to the inhomogeneity or roughness of the solid boundary.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Wetting describes how a liquid drop spreads on a solid surface. The most important quantity in wetting is the contact 
angle between the liquid surface and the solid surface [8]. When the solid surface is homogeneous, the contact angle for a 
static drop is given by the famous Young’s equation:

cos θY = γS V − γS L

γLV
, (1)

where γS L , γS V and γLV are the solid–liquid, solid–vapor and liquid–vapor surface energy densities, respectively. θY is the 
so-called Young’s angle [37]. Mathematically, Young’s equation (1) can be derived by minimizing the total energy in the 
solid–liquid–vapor system. If we ignore gravity, the total energy in the system can be written as

E = γLV |�LV | + γS L |�S L | + γS V |�S V |, (2)

where �LV , �S L and �S V are respectively the liquid–vapor, solid–liquid and solid–vapor interfaces, and | · | denotes the 
area of the interfaces. When the solid surface � is a homogeneous planar surface, under the condition that the volume of 
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Fig. 1. Wetting on a rough surface.

the drop is fixed, the unique minimizer of the total energy is a domain with a spherical surface in �, and the contact angle 
between the surface and the solid surface � is Young’s angle θY [33].

The study of wetting and contact angle hysteresis on rough surfaces is of critical importance for many applications and 
has attracted much interest in the physics and applied mathematics communities [2,11,16,27,36]. Numerical simulation of 
wetting on rough surfaces is challenging. One must track the interface motion accurately, as well as deal with complicated 
boundary shapes and boundary conditions. There are many different types of numerical methods for solving interface and 
contact line problems, including the front-tracking method [22,34], the front-capturing method using the level-set function 
[38], the phase-field methods [4,10], among others [9].

Merriman, Bence and Osher (MBO) developed an efficient threshold dynamics method to simulate the motion by mean 
curvature flow [24,25]. This method is based on the observation that the level-set of the solution of a heat equation moves 
in normal direction at a velocity equal to the mean curvature of the level-set surface. The method alternately diffuses and 
sharpens characteristic functions of regions and is easy to implement and highly efficient. The method was also extended to 
problems with volume preservation [19,30] and to some high-order geometric flow problems [14]. Recently, Esedoglu and 
Otto extended the threshold dynamics method to the multi-phase problems with arbitrary surface tension [13]. There have 
been many studies on the MBO threshold dynamics method, including some efficient implementations [12,28,29,32] and 
convergence analysis [3,5,15,18,23]. In particular, Laux and collaborators established the convergence of some computational 
algorithms including one with volume preservation[20,21].

The generalization of MBO-type methods to the wetting problem where interfaces intersecting the boundary is not 
straightforward because of a lack of integral representation with a heat kernel for a general domain. In the original MBO 
scheme, when the interface does not intersect the solid boundary, one can solve the heat equation efficiently on a rectangu-
lar domain with a uniform grid using convolution of the heat kernel with the initial condition [28,29]. The convolution can 
be evaluated using fast Fourier transform (FFT) at N log N cost per time step where N is the total number of grid points. 
One way to generalize MBO-type methods to wetting on solid surfaces is to solve the heat equation with a wetting bound-
ary condition before the volume-preserving thresholding step. However, the usual fast algorithms cannot be applied for this 
case, especially when the boundary is rough.

In this paper, we aim to develop an efficient volume-preserving threshold dynamics method for solving wetting problems 
on rough surfaces. Our method is based on the approach of Esedoglu–Otto [13]. The key idea is to extend the original 
domain with a rough boundary to a regular cube and treat the solid part as another phase. In the thresholding step, the 
solid phase domain remains unchanged. We show that the algorithm has the total interface energy decaying property and 
our numerical results show that the equilibrium interface satisfies Young’s equation near the contact point. The advantage 
of the method is that it can be implemented efficiently on uniform meshes with a fast algorithm (e.g. FFT) since the 
computational domain is rectangular and we can simulate wetting on rough boundaries of any shape. We also introduce 
a fast algorithm for volume preservation based on a quick-sort algorithm and a time refinement scheme to improve the 
accuracy of the solution at the contact line.

The paper proceeds as follows. In Section 2, we introduce the surface energies of the wetting problem. A direct (but less 
efficient) MBO-type threshold dynamics method for solving wetting problems is also described. In Section 3, we introduce 
a new threshold dynamics method which is simple, efficient and easy to implement. Several modifications of the method 
are also discussed. In Section 4, we discuss the implementation of the algorithm and perform the accuracy check. We 
also introduce a quick-sort algorithm for volume preservation and a time refinement technique to improve the accuracy 
of the contact point motion. In Section 5 and Section 6, we present numerical examples of wetting on rough surfaces to 
demonstrate the efficiency of the new method.

2. The minimization of surface energies

We consider a wetting problem in a domain � ∈ R
n , n = 2, 3 (see Fig. 1). The solid surface � is part of the domain 

boundary ∂�. Denote the liquid domain by D1 ⊂ �. For simplicity, we assume that ∂ D1 ∩ ∂� ⊂ �. The volume of the liquid 
drop is fixed such that |D1| = V 0. We denote �LV = ∂ D1 ∩�, �S L = ∂ D1 ∩� and �S V = � \ ∂ D1 as the liquid–vapor, solid–
liquid and solid–vapor interfaces respectively. Then, the equilibrium configuration of the system is obtained by minimizing 
the total interface energy of the system as follows:
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